Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall Targets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Matéria (Rio de Janeiro. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000300446 |
Resumo: | ABSTRACT The accurate numerical simulation of projectile penetration process is a complex challenge. Experimental investigation of these time-dependent non-linear events is expensive and time-consuming. In this paper, 3-D numerical simulations are carried out to estimate the penetration performance of designed penetrators against the double and triple brick-wall, plain concrete wall and light armor targets at impact velocities of 120 to 300 m/s, undergoing normal and oblique impacts. In all simulations, both the projectile and targets are modeled using Lagrange solver facility, available in ANSYS/Autodyn. During penetration process, targets experience severe grid deformation in the region local to the penetrator. Highly distorted elements are removed from the calculation using erosion strain algorithm. The simulation results suggest that at maximum velocity flat-nose (FN) projectile successfully perforate all the targets with significant residual velocity, for both normal and maximum oblique impact scenarios. For impact velocity of 120 m/s, the FN projectile perforated the armor and concrete targets but was not able to penetrate and cross through these targets. However, both brick-wall targets were perforated at normal and maximum oblique angle with sufficient residual velocity. The validation of the calculated results and numerical setup were made with experiments against double and triple brick-wall targets for impacting velocity of 170 m/s. Good agreement between the experimental and estimated projectile residual velocity has been achieved. In contrast to FN projectile, the ogive-nose penetrator calculated results has shown ricocheting behavior on impacting the light armor target at minimum velocity and maximum obliquity. The FN projectile has shown better perforation and penetration performance against light armor and domestic targets. The projectile minimum velocity is also estimated numerically to fully penetrate three different types of targets. These results would be beneficial for the designers and operators to get the desired performance against domestic and light armor targets with sureness. |
id |
RLAM-1_51424c8a54a210bbfd001c2c14d473cc |
---|---|
oai_identifier_str |
oai:scielo:S1517-70762018000300446 |
network_acronym_str |
RLAM-1 |
network_name_str |
Matéria (Rio de Janeiro. Online) |
repository_id_str |
|
spelling |
Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall TargetsNumerical simulationOblique impactPerforationPenetrationBrick-wallABSTRACT The accurate numerical simulation of projectile penetration process is a complex challenge. Experimental investigation of these time-dependent non-linear events is expensive and time-consuming. In this paper, 3-D numerical simulations are carried out to estimate the penetration performance of designed penetrators against the double and triple brick-wall, plain concrete wall and light armor targets at impact velocities of 120 to 300 m/s, undergoing normal and oblique impacts. In all simulations, both the projectile and targets are modeled using Lagrange solver facility, available in ANSYS/Autodyn. During penetration process, targets experience severe grid deformation in the region local to the penetrator. Highly distorted elements are removed from the calculation using erosion strain algorithm. The simulation results suggest that at maximum velocity flat-nose (FN) projectile successfully perforate all the targets with significant residual velocity, for both normal and maximum oblique impact scenarios. For impact velocity of 120 m/s, the FN projectile perforated the armor and concrete targets but was not able to penetrate and cross through these targets. However, both brick-wall targets were perforated at normal and maximum oblique angle with sufficient residual velocity. The validation of the calculated results and numerical setup were made with experiments against double and triple brick-wall targets for impacting velocity of 170 m/s. Good agreement between the experimental and estimated projectile residual velocity has been achieved. In contrast to FN projectile, the ogive-nose penetrator calculated results has shown ricocheting behavior on impacting the light armor target at minimum velocity and maximum obliquity. The FN projectile has shown better perforation and penetration performance against light armor and domestic targets. The projectile minimum velocity is also estimated numerically to fully penetrate three different types of targets. These results would be beneficial for the designers and operators to get the desired performance against domestic and light armor targets with sureness.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000300446Matéria (Rio de Janeiro) v.23 n.3 2018reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/s1517-707620180003.0527info:eu-repo/semantics/openAccessZakir,Sheikh MuhammadTao,SuoYulong,LiSohail,AhmedAhmed,Dar UzairFarrukh,Rasheed Muhammadeng2018-10-10T00:00:00Zoai:scielo:S1517-70762018000300446Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2018-10-10T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false |
dc.title.none.fl_str_mv |
Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall Targets |
title |
Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall Targets |
spellingShingle |
Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall Targets Zakir,Sheikh Muhammad Numerical simulation Oblique impact Perforation Penetration Brick-wall |
title_short |
Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall Targets |
title_full |
Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall Targets |
title_fullStr |
Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall Targets |
title_full_unstemmed |
Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall Targets |
title_sort |
Numerical Studies of Penetration in Light Armor, Concrete and Brick-Wall Targets |
author |
Zakir,Sheikh Muhammad |
author_facet |
Zakir,Sheikh Muhammad Tao,Suo Yulong,Li Sohail,Ahmed Ahmed,Dar Uzair Farrukh,Rasheed Muhammad |
author_role |
author |
author2 |
Tao,Suo Yulong,Li Sohail,Ahmed Ahmed,Dar Uzair Farrukh,Rasheed Muhammad |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Zakir,Sheikh Muhammad Tao,Suo Yulong,Li Sohail,Ahmed Ahmed,Dar Uzair Farrukh,Rasheed Muhammad |
dc.subject.por.fl_str_mv |
Numerical simulation Oblique impact Perforation Penetration Brick-wall |
topic |
Numerical simulation Oblique impact Perforation Penetration Brick-wall |
description |
ABSTRACT The accurate numerical simulation of projectile penetration process is a complex challenge. Experimental investigation of these time-dependent non-linear events is expensive and time-consuming. In this paper, 3-D numerical simulations are carried out to estimate the penetration performance of designed penetrators against the double and triple brick-wall, plain concrete wall and light armor targets at impact velocities of 120 to 300 m/s, undergoing normal and oblique impacts. In all simulations, both the projectile and targets are modeled using Lagrange solver facility, available in ANSYS/Autodyn. During penetration process, targets experience severe grid deformation in the region local to the penetrator. Highly distorted elements are removed from the calculation using erosion strain algorithm. The simulation results suggest that at maximum velocity flat-nose (FN) projectile successfully perforate all the targets with significant residual velocity, for both normal and maximum oblique impact scenarios. For impact velocity of 120 m/s, the FN projectile perforated the armor and concrete targets but was not able to penetrate and cross through these targets. However, both brick-wall targets were perforated at normal and maximum oblique angle with sufficient residual velocity. The validation of the calculated results and numerical setup were made with experiments against double and triple brick-wall targets for impacting velocity of 170 m/s. Good agreement between the experimental and estimated projectile residual velocity has been achieved. In contrast to FN projectile, the ogive-nose penetrator calculated results has shown ricocheting behavior on impacting the light armor target at minimum velocity and maximum obliquity. The FN projectile has shown better perforation and penetration performance against light armor and domestic targets. The projectile minimum velocity is also estimated numerically to fully penetrate three different types of targets. These results would be beneficial for the designers and operators to get the desired performance against domestic and light armor targets with sureness. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000300446 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000300446 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1517-707620180003.0527 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
dc.source.none.fl_str_mv |
Matéria (Rio de Janeiro) v.23 n.3 2018 reponame:Matéria (Rio de Janeiro. Online) instname:Matéria (Rio de Janeiro. Online) instacron:RLAM |
instname_str |
Matéria (Rio de Janeiro. Online) |
instacron_str |
RLAM |
institution |
RLAM |
reponame_str |
Matéria (Rio de Janeiro. Online) |
collection |
Matéria (Rio de Janeiro. Online) |
repository.name.fl_str_mv |
Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online) |
repository.mail.fl_str_mv |
||materia@labh2.coppe.ufrj.br |
_version_ |
1752126691187097600 |