Combustion synthesis of Co-Cu-Mn oxides deploying different fuels

Detalhes bibliográficos
Autor(a) principal: Merino,María Celeste Gardey
Data de Publicação: 2015
Outros Autores: RominaArreche, Lassa,María Silvina, Lascalea,Gustavo Enrique, Estrella,Alfredo, Rodriguez,Mariana Estela
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Matéria (Rio de Janeiro. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762015000300779
Resumo: ABSTRACTTernary spinel-like oxides such as CuFeMnO4, CoCuMnOxand CuCr2O4 are attractive materials due to their absorbent properties when used as pigments for selective surfaces thus improving solar heaters efficiency. These materials are obtained through sol-gel and sol-gel-combustion methods. This work proposes the synthesis of mixed oxides of Co, Cu and Mn by means of original one-step stoichiometric combustion methods starting from Mn(NO3)2,Co(NO3)26H2O, Cu(NO3)23H2O and Aspartic acid (Asp) or Lysine( Lys) as fuels. The resulting ashes after the combustion were calcined at 500 °C. The obtained ashes and the calcined powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and by Brunauer-Emmett-Teller method (BET), and TG-DTA analysis. In calcined powders obtained with Lys (CoCuMnOx-Lys), the phase corresponding to CoCuMnOx and others segregated phases were identified. However, in calcined powders obtained with Asp (CoCuMnOx-Asp) only the phase corresponding to CoCuMnOxwas identified. The sample CoCuMnOx-Lys presented an average crystallite size of 44 nm and a specific surface area of 23 m2/g while in CoCuMnOx-Asp, 54 nm and 13 m2/g values were obtained throughout FT-IR vibrational modes associated with spinel metallic oxides for both calcined powders (Asp and Lys) were observed. Additionally, by means of TEM, polyhedral particles with an average size of 20 to 100 nm were observed. In particular, it was determined in CoCuMnOx-Lys an average size of 44nm. According to the different fuels used (Asp and Lys), an evident variation in the obtained phases was observed. However, it was not obtained any difference in crystallite size and specific area surface values. It is of considerable importance the study of further syntheses processes to verify this trend.
id RLAM-1_93471d6e1c500cff1a1d546604db7f93
oai_identifier_str oai:scielo:S1517-70762015000300779
network_acronym_str RLAM-1
network_name_str Matéria (Rio de Janeiro. Online)
repository_id_str
spelling Combustion synthesis of Co-Cu-Mn oxides deploying different fuelsCombustion synthesesspinel-like oxidesselective paintspigmentsnanostructured materialsABSTRACTTernary spinel-like oxides such as CuFeMnO4, CoCuMnOxand CuCr2O4 are attractive materials due to their absorbent properties when used as pigments for selective surfaces thus improving solar heaters efficiency. These materials are obtained through sol-gel and sol-gel-combustion methods. This work proposes the synthesis of mixed oxides of Co, Cu and Mn by means of original one-step stoichiometric combustion methods starting from Mn(NO3)2,Co(NO3)26H2O, Cu(NO3)23H2O and Aspartic acid (Asp) or Lysine( Lys) as fuels. The resulting ashes after the combustion were calcined at 500 °C. The obtained ashes and the calcined powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and by Brunauer-Emmett-Teller method (BET), and TG-DTA analysis. In calcined powders obtained with Lys (CoCuMnOx-Lys), the phase corresponding to CoCuMnOx and others segregated phases were identified. However, in calcined powders obtained with Asp (CoCuMnOx-Asp) only the phase corresponding to CoCuMnOxwas identified. The sample CoCuMnOx-Lys presented an average crystallite size of 44 nm and a specific surface area of 23 m2/g while in CoCuMnOx-Asp, 54 nm and 13 m2/g values were obtained throughout FT-IR vibrational modes associated with spinel metallic oxides for both calcined powders (Asp and Lys) were observed. Additionally, by means of TEM, polyhedral particles with an average size of 20 to 100 nm were observed. In particular, it was determined in CoCuMnOx-Lys an average size of 44nm. According to the different fuels used (Asp and Lys), an evident variation in the obtained phases was observed. However, it was not obtained any difference in crystallite size and specific area surface values. It is of considerable importance the study of further syntheses processes to verify this trend.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762015000300779Matéria (Rio de Janeiro) v.20 n.3 2015reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/S1517-707620150003.0083info:eu-repo/semantics/openAccessMerino,María Celeste GardeyRominaArreche,Lassa,María SilvinaLascalea,Gustavo EnriqueEstrella,AlfredoRodriguez,Mariana Estelaeng2015-10-21T00:00:00Zoai:scielo:S1517-70762015000300779Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2015-10-21T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false
dc.title.none.fl_str_mv Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
title Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
spellingShingle Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
Merino,María Celeste Gardey
Combustion syntheses
spinel-like oxides
selective paints
pigments
nanostructured materials
title_short Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
title_full Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
title_fullStr Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
title_full_unstemmed Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
title_sort Combustion synthesis of Co-Cu-Mn oxides deploying different fuels
author Merino,María Celeste Gardey
author_facet Merino,María Celeste Gardey
RominaArreche,
Lassa,María Silvina
Lascalea,Gustavo Enrique
Estrella,Alfredo
Rodriguez,Mariana Estela
author_role author
author2 RominaArreche,
Lassa,María Silvina
Lascalea,Gustavo Enrique
Estrella,Alfredo
Rodriguez,Mariana Estela
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Merino,María Celeste Gardey
RominaArreche,
Lassa,María Silvina
Lascalea,Gustavo Enrique
Estrella,Alfredo
Rodriguez,Mariana Estela
dc.subject.por.fl_str_mv Combustion syntheses
spinel-like oxides
selective paints
pigments
nanostructured materials
topic Combustion syntheses
spinel-like oxides
selective paints
pigments
nanostructured materials
description ABSTRACTTernary spinel-like oxides such as CuFeMnO4, CoCuMnOxand CuCr2O4 are attractive materials due to their absorbent properties when used as pigments for selective surfaces thus improving solar heaters efficiency. These materials are obtained through sol-gel and sol-gel-combustion methods. This work proposes the synthesis of mixed oxides of Co, Cu and Mn by means of original one-step stoichiometric combustion methods starting from Mn(NO3)2,Co(NO3)26H2O, Cu(NO3)23H2O and Aspartic acid (Asp) or Lysine( Lys) as fuels. The resulting ashes after the combustion were calcined at 500 °C. The obtained ashes and the calcined powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and by Brunauer-Emmett-Teller method (BET), and TG-DTA analysis. In calcined powders obtained with Lys (CoCuMnOx-Lys), the phase corresponding to CoCuMnOx and others segregated phases were identified. However, in calcined powders obtained with Asp (CoCuMnOx-Asp) only the phase corresponding to CoCuMnOxwas identified. The sample CoCuMnOx-Lys presented an average crystallite size of 44 nm and a specific surface area of 23 m2/g while in CoCuMnOx-Asp, 54 nm and 13 m2/g values were obtained throughout FT-IR vibrational modes associated with spinel metallic oxides for both calcined powders (Asp and Lys) were observed. Additionally, by means of TEM, polyhedral particles with an average size of 20 to 100 nm were observed. In particular, it was determined in CoCuMnOx-Lys an average size of 44nm. According to the different fuels used (Asp and Lys), an evident variation in the obtained phases was observed. However, it was not obtained any difference in crystallite size and specific area surface values. It is of considerable importance the study of further syntheses processes to verify this trend.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762015000300779
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762015000300779
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1517-707620150003.0083
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
dc.source.none.fl_str_mv Matéria (Rio de Janeiro) v.20 n.3 2015
reponame:Matéria (Rio de Janeiro. Online)
instname:Matéria (Rio de Janeiro. Online)
instacron:RLAM
instname_str Matéria (Rio de Janeiro. Online)
instacron_str RLAM
institution RLAM
reponame_str Matéria (Rio de Janeiro. Online)
collection Matéria (Rio de Janeiro. Online)
repository.name.fl_str_mv Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)
repository.mail.fl_str_mv ||materia@labh2.coppe.ufrj.br
_version_ 1752126688868696064