Fading and graphite nucleation sites in grey iron inoculated using silicon carbide
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Matéria (Rio de Janeiro. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762017000200428 |
Resumo: | ABSTRACT The most commonly used inoculants for producing grey iron are ferrosilicon based, but also there are reports indicating that silicon carbide can act as inoculant. There are few published studies of fading and nucleation sites of graphite when silicon carbide is used as inoculant, thus the understanding of the inoculation effect of silicon carbide is incomplete. To study these two aspects, fading and graphite nucleation sites, an ASTM class 35B grey iron inoculated with silicon carbide was produced and characterized. The results were compared with an ASTM class 35B grey iron inoculated with a ferrosilicon base inoculant and without inoculation. It was found that the effect of the silicon carbide was comparable to the ferrosilicon base inoculant and fading was similar. In addition, the graphite nucleation sites in the grey iron inoculated with silicon carbide were irregular shaped manganese sulfides larger than the nuclei in the grey iron inoculated with ferrosilicon, which suggest a similar nucleation mechanism for both inoculants. |
id |
RLAM-1_9fbbfd0323ba9f1202b4b7ca40853a93 |
---|---|
oai_identifier_str |
oai:scielo:S1517-70762017000200428 |
network_acronym_str |
RLAM-1 |
network_name_str |
Matéria (Rio de Janeiro. Online) |
repository_id_str |
|
spelling |
Fading and graphite nucleation sites in grey iron inoculated using silicon carbideGrey ironinoculationsilicon carbidefadinggraphite nucleiABSTRACT The most commonly used inoculants for producing grey iron are ferrosilicon based, but also there are reports indicating that silicon carbide can act as inoculant. There are few published studies of fading and nucleation sites of graphite when silicon carbide is used as inoculant, thus the understanding of the inoculation effect of silicon carbide is incomplete. To study these two aspects, fading and graphite nucleation sites, an ASTM class 35B grey iron inoculated with silicon carbide was produced and characterized. The results were compared with an ASTM class 35B grey iron inoculated with a ferrosilicon base inoculant and without inoculation. It was found that the effect of the silicon carbide was comparable to the ferrosilicon base inoculant and fading was similar. In addition, the graphite nucleation sites in the grey iron inoculated with silicon carbide were irregular shaped manganese sulfides larger than the nuclei in the grey iron inoculated with ferrosilicon, which suggest a similar nucleation mechanism for both inoculants.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762017000200428Matéria (Rio de Janeiro) v.22 n.2 2017reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/s1517-707620170002.0152info:eu-repo/semantics/openAccessGonzález,Harold MachadoEspitia,Paula PérezSierra,Ricardo Aristizábaleng2017-06-29T00:00:00Zoai:scielo:S1517-70762017000200428Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2017-06-29T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false |
dc.title.none.fl_str_mv |
Fading and graphite nucleation sites in grey iron inoculated using silicon carbide |
title |
Fading and graphite nucleation sites in grey iron inoculated using silicon carbide |
spellingShingle |
Fading and graphite nucleation sites in grey iron inoculated using silicon carbide González,Harold Machado Grey iron inoculation silicon carbide fading graphite nuclei |
title_short |
Fading and graphite nucleation sites in grey iron inoculated using silicon carbide |
title_full |
Fading and graphite nucleation sites in grey iron inoculated using silicon carbide |
title_fullStr |
Fading and graphite nucleation sites in grey iron inoculated using silicon carbide |
title_full_unstemmed |
Fading and graphite nucleation sites in grey iron inoculated using silicon carbide |
title_sort |
Fading and graphite nucleation sites in grey iron inoculated using silicon carbide |
author |
González,Harold Machado |
author_facet |
González,Harold Machado Espitia,Paula Pérez Sierra,Ricardo Aristizábal |
author_role |
author |
author2 |
Espitia,Paula Pérez Sierra,Ricardo Aristizábal |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
González,Harold Machado Espitia,Paula Pérez Sierra,Ricardo Aristizábal |
dc.subject.por.fl_str_mv |
Grey iron inoculation silicon carbide fading graphite nuclei |
topic |
Grey iron inoculation silicon carbide fading graphite nuclei |
description |
ABSTRACT The most commonly used inoculants for producing grey iron are ferrosilicon based, but also there are reports indicating that silicon carbide can act as inoculant. There are few published studies of fading and nucleation sites of graphite when silicon carbide is used as inoculant, thus the understanding of the inoculation effect of silicon carbide is incomplete. To study these two aspects, fading and graphite nucleation sites, an ASTM class 35B grey iron inoculated with silicon carbide was produced and characterized. The results were compared with an ASTM class 35B grey iron inoculated with a ferrosilicon base inoculant and without inoculation. It was found that the effect of the silicon carbide was comparable to the ferrosilicon base inoculant and fading was similar. In addition, the graphite nucleation sites in the grey iron inoculated with silicon carbide were irregular shaped manganese sulfides larger than the nuclei in the grey iron inoculated with ferrosilicon, which suggest a similar nucleation mechanism for both inoculants. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762017000200428 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762017000200428 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1517-707620170002.0152 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
dc.source.none.fl_str_mv |
Matéria (Rio de Janeiro) v.22 n.2 2017 reponame:Matéria (Rio de Janeiro. Online) instname:Matéria (Rio de Janeiro. Online) instacron:RLAM |
instname_str |
Matéria (Rio de Janeiro. Online) |
instacron_str |
RLAM |
institution |
RLAM |
reponame_str |
Matéria (Rio de Janeiro. Online) |
collection |
Matéria (Rio de Janeiro. Online) |
repository.name.fl_str_mv |
Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online) |
repository.mail.fl_str_mv |
||materia@labh2.coppe.ufrj.br |
_version_ |
1752126689739014144 |