Improvement of power efficiency of hybrid white OLEDs based on p-i-n structures

Detalhes bibliográficos
Autor(a) principal: Chittawanij,Apisit
Data de Publicação: 2018
Outros Autores: Locharoenrat,Kitsakorn
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Matéria (Rio de Janeiro. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000100418
Resumo: ABSTRACT In this article, hybrid white organic light-emitting diodes (WOLEDs) under p-i-n structures have been investigated in terms of power efficiency. By using tris(8-hydroxy quinolinato) aluminum (Alq3) doped with 8-hydroxy-quinolinato lithium (Liq) as an n-type and WHI112 doped with molybdenum trioxide (MoO3) as a p-type, the typical device structure of ITO/WHI112: 20 wt.% MoO3 (55 nm)/HTG-1 (10 nm)/UBH15: 3 wt.% EB502 (10 nm)/EPH31: 3 wt.% EPY01 (25nm)/3TPYMB (10 nm)/Alq3: 33 wt.% Liq (25 nm)/Al (150 nm) was fabricated. It has been found that the p-i-n device based device showed the lowest driving voltage and highest power efficiency among the undoped and n-type devices. At the current density of 20 mA/cm2, the roll-off of the efficiency in the p-i-n device was much smaller than the n-type and the undoped devices. The current and power efficiency of the p-i-n device were maintained with 17.2 cd/A and 5.1 lm/W at 100 mA/cm2, it was reduced to 7.5 % and 21 %, respectively. In contrast, the n-type device exhibited the significant reduction of efficiency (14.4 cd/A and 3.8 lm/W at 80 mA/cm2), it was reduced to 20 % and 39.6 %, respectively. The superior performances of the p-i-n structure based device were attributed to the high hole injection ability of WHI112:MoO3 and high electron mobility of Alq3:Liq, leading to high power efficiency and low driving voltage. A better balance of electrons and holes could contribute to a good current efficiency for the device. These findings strongly indicated that carrier injection ability and balance showed significant affects on the performance of OLED.
id RLAM-1_b96d3b22693f109cc789c0bb9753722e
oai_identifier_str oai:scielo:S1517-70762018000100418
network_acronym_str RLAM-1
network_name_str Matéria (Rio de Janeiro. Online)
repository_id_str
spelling Improvement of power efficiency of hybrid white OLEDs based on p-i-n structuresHighly efficient OLEDshybrid white OLEDsp-i-n OLEDABSTRACT In this article, hybrid white organic light-emitting diodes (WOLEDs) under p-i-n structures have been investigated in terms of power efficiency. By using tris(8-hydroxy quinolinato) aluminum (Alq3) doped with 8-hydroxy-quinolinato lithium (Liq) as an n-type and WHI112 doped with molybdenum trioxide (MoO3) as a p-type, the typical device structure of ITO/WHI112: 20 wt.% MoO3 (55 nm)/HTG-1 (10 nm)/UBH15: 3 wt.% EB502 (10 nm)/EPH31: 3 wt.% EPY01 (25nm)/3TPYMB (10 nm)/Alq3: 33 wt.% Liq (25 nm)/Al (150 nm) was fabricated. It has been found that the p-i-n device based device showed the lowest driving voltage and highest power efficiency among the undoped and n-type devices. At the current density of 20 mA/cm2, the roll-off of the efficiency in the p-i-n device was much smaller than the n-type and the undoped devices. The current and power efficiency of the p-i-n device were maintained with 17.2 cd/A and 5.1 lm/W at 100 mA/cm2, it was reduced to 7.5 % and 21 %, respectively. In contrast, the n-type device exhibited the significant reduction of efficiency (14.4 cd/A and 3.8 lm/W at 80 mA/cm2), it was reduced to 20 % and 39.6 %, respectively. The superior performances of the p-i-n structure based device were attributed to the high hole injection ability of WHI112:MoO3 and high electron mobility of Alq3:Liq, leading to high power efficiency and low driving voltage. A better balance of electrons and holes could contribute to a good current efficiency for the device. These findings strongly indicated that carrier injection ability and balance showed significant affects on the performance of OLED.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000100418Matéria (Rio de Janeiro) v.23 n.1 2018reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/s1517-707620170001.0299info:eu-repo/semantics/openAccessChittawanij,ApisitLocharoenrat,Kitsakorneng2018-03-02T00:00:00Zoai:scielo:S1517-70762018000100418Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2018-03-02T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false
dc.title.none.fl_str_mv Improvement of power efficiency of hybrid white OLEDs based on p-i-n structures
title Improvement of power efficiency of hybrid white OLEDs based on p-i-n structures
spellingShingle Improvement of power efficiency of hybrid white OLEDs based on p-i-n structures
Chittawanij,Apisit
Highly efficient OLEDs
hybrid white OLEDs
p-i-n OLED
title_short Improvement of power efficiency of hybrid white OLEDs based on p-i-n structures
title_full Improvement of power efficiency of hybrid white OLEDs based on p-i-n structures
title_fullStr Improvement of power efficiency of hybrid white OLEDs based on p-i-n structures
title_full_unstemmed Improvement of power efficiency of hybrid white OLEDs based on p-i-n structures
title_sort Improvement of power efficiency of hybrid white OLEDs based on p-i-n structures
author Chittawanij,Apisit
author_facet Chittawanij,Apisit
Locharoenrat,Kitsakorn
author_role author
author2 Locharoenrat,Kitsakorn
author2_role author
dc.contributor.author.fl_str_mv Chittawanij,Apisit
Locharoenrat,Kitsakorn
dc.subject.por.fl_str_mv Highly efficient OLEDs
hybrid white OLEDs
p-i-n OLED
topic Highly efficient OLEDs
hybrid white OLEDs
p-i-n OLED
description ABSTRACT In this article, hybrid white organic light-emitting diodes (WOLEDs) under p-i-n structures have been investigated in terms of power efficiency. By using tris(8-hydroxy quinolinato) aluminum (Alq3) doped with 8-hydroxy-quinolinato lithium (Liq) as an n-type and WHI112 doped with molybdenum trioxide (MoO3) as a p-type, the typical device structure of ITO/WHI112: 20 wt.% MoO3 (55 nm)/HTG-1 (10 nm)/UBH15: 3 wt.% EB502 (10 nm)/EPH31: 3 wt.% EPY01 (25nm)/3TPYMB (10 nm)/Alq3: 33 wt.% Liq (25 nm)/Al (150 nm) was fabricated. It has been found that the p-i-n device based device showed the lowest driving voltage and highest power efficiency among the undoped and n-type devices. At the current density of 20 mA/cm2, the roll-off of the efficiency in the p-i-n device was much smaller than the n-type and the undoped devices. The current and power efficiency of the p-i-n device were maintained with 17.2 cd/A and 5.1 lm/W at 100 mA/cm2, it was reduced to 7.5 % and 21 %, respectively. In contrast, the n-type device exhibited the significant reduction of efficiency (14.4 cd/A and 3.8 lm/W at 80 mA/cm2), it was reduced to 20 % and 39.6 %, respectively. The superior performances of the p-i-n structure based device were attributed to the high hole injection ability of WHI112:MoO3 and high electron mobility of Alq3:Liq, leading to high power efficiency and low driving voltage. A better balance of electrons and holes could contribute to a good current efficiency for the device. These findings strongly indicated that carrier injection ability and balance showed significant affects on the performance of OLED.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000100418
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000100418
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s1517-707620170001.0299
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
dc.source.none.fl_str_mv Matéria (Rio de Janeiro) v.23 n.1 2018
reponame:Matéria (Rio de Janeiro. Online)
instname:Matéria (Rio de Janeiro. Online)
instacron:RLAM
instname_str Matéria (Rio de Janeiro. Online)
instacron_str RLAM
institution RLAM
reponame_str Matéria (Rio de Janeiro. Online)
collection Matéria (Rio de Janeiro. Online)
repository.name.fl_str_mv Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)
repository.mail.fl_str_mv ||materia@labh2.coppe.ufrj.br
_version_ 1752126690241282048