Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation

Detalhes bibliográficos
Autor(a) principal: Lopes,Adriana Carla de Oliveira
Data de Publicação: 2020
Outros Autores: Abreu,Fabiane Caxico de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Matéria (Rio de Janeiro. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762020000300340
Resumo: ABSTRACT The use of fossil fuels, especially oil and gas, has accelerated in recent years, resulting in the global energy crisis. The fermentative biological process is a sustainable way to produce hydrogen, as it can use as a substrate various types of carbohydrate-rich industrial and household waste such as fruit, minimizing but not completely eliminating the problems caused by improper disposal of this material. From a perspective of energy conservation and use of renewable sources for energy generation, this work aims to contribute to the identification of the use of a currently unused portion of energy, optimizing hydrogen production from a fuel cell. microbial. The main nanomaterial used in electrolysis was carbon nanotubes (CNT) incorporated into carbon felt (CF). Cyclic voltammetry studies were also performed on three electrode systems: vitreous carbon electrode as working electrode, platinum electrode as auxiliary electrode and Ag / AgCl / Cl- as reference electrode. An electrochemical cell formed by two separate compartments was constructed. Before starting the electrolysis experiment, an experimental design was performed using the complete factorial design technique to analyze the influence of the variables selected for this study. The independent variables selected were: Tropical fruit liquor concentration in %v/v, type of working electrode, electrolysis time and pH of the electrolyte medium. The observed variable was the concentration in% v / v of the hydrogen gas obtained in the electrolysis. After the results of the tests, it was concluded that carbon nanotubes can be used as working electrode, presenting success in the hydrogen production process and that the pH of the electrolytic medium has a strong influence on this process. The present work was concluded presenting an alternative way in the production of a renewable energy source.
id RLAM-1_c0d27196fd22a832b7a00bc8761233ec
oai_identifier_str oai:scielo:S1517-70762020000300340
network_acronym_str RLAM-1
network_name_str Matéria (Rio de Janeiro. Online)
repository_id_str
spelling Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentationElectrolysisTropical FruitsHydrogenABSTRACT The use of fossil fuels, especially oil and gas, has accelerated in recent years, resulting in the global energy crisis. The fermentative biological process is a sustainable way to produce hydrogen, as it can use as a substrate various types of carbohydrate-rich industrial and household waste such as fruit, minimizing but not completely eliminating the problems caused by improper disposal of this material. From a perspective of energy conservation and use of renewable sources for energy generation, this work aims to contribute to the identification of the use of a currently unused portion of energy, optimizing hydrogen production from a fuel cell. microbial. The main nanomaterial used in electrolysis was carbon nanotubes (CNT) incorporated into carbon felt (CF). Cyclic voltammetry studies were also performed on three electrode systems: vitreous carbon electrode as working electrode, platinum electrode as auxiliary electrode and Ag / AgCl / Cl- as reference electrode. An electrochemical cell formed by two separate compartments was constructed. Before starting the electrolysis experiment, an experimental design was performed using the complete factorial design technique to analyze the influence of the variables selected for this study. The independent variables selected were: Tropical fruit liquor concentration in %v/v, type of working electrode, electrolysis time and pH of the electrolyte medium. The observed variable was the concentration in% v / v of the hydrogen gas obtained in the electrolysis. After the results of the tests, it was concluded that carbon nanotubes can be used as working electrode, presenting success in the hydrogen production process and that the pH of the electrolytic medium has a strong influence on this process. The present work was concluded presenting an alternative way in the production of a renewable energy source.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762020000300340Matéria (Rio de Janeiro) v.25 n.3 2020reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/s1517-707620200003.1121info:eu-repo/semantics/openAccessLopes,Adriana Carla de OliveiraAbreu,Fabiane Caxico deeng2020-09-14T00:00:00Zoai:scielo:S1517-70762020000300340Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2020-09-14T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false
dc.title.none.fl_str_mv Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation
title Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation
spellingShingle Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation
Lopes,Adriana Carla de Oliveira
Electrolysis
Tropical Fruits
Hydrogen
title_short Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation
title_full Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation
title_fullStr Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation
title_full_unstemmed Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation
title_sort Utilization of carbon nanotubes in hydrogen electrosynthesis from tropical fruit fermentation
author Lopes,Adriana Carla de Oliveira
author_facet Lopes,Adriana Carla de Oliveira
Abreu,Fabiane Caxico de
author_role author
author2 Abreu,Fabiane Caxico de
author2_role author
dc.contributor.author.fl_str_mv Lopes,Adriana Carla de Oliveira
Abreu,Fabiane Caxico de
dc.subject.por.fl_str_mv Electrolysis
Tropical Fruits
Hydrogen
topic Electrolysis
Tropical Fruits
Hydrogen
description ABSTRACT The use of fossil fuels, especially oil and gas, has accelerated in recent years, resulting in the global energy crisis. The fermentative biological process is a sustainable way to produce hydrogen, as it can use as a substrate various types of carbohydrate-rich industrial and household waste such as fruit, minimizing but not completely eliminating the problems caused by improper disposal of this material. From a perspective of energy conservation and use of renewable sources for energy generation, this work aims to contribute to the identification of the use of a currently unused portion of energy, optimizing hydrogen production from a fuel cell. microbial. The main nanomaterial used in electrolysis was carbon nanotubes (CNT) incorporated into carbon felt (CF). Cyclic voltammetry studies were also performed on three electrode systems: vitreous carbon electrode as working electrode, platinum electrode as auxiliary electrode and Ag / AgCl / Cl- as reference electrode. An electrochemical cell formed by two separate compartments was constructed. Before starting the electrolysis experiment, an experimental design was performed using the complete factorial design technique to analyze the influence of the variables selected for this study. The independent variables selected were: Tropical fruit liquor concentration in %v/v, type of working electrode, electrolysis time and pH of the electrolyte medium. The observed variable was the concentration in% v / v of the hydrogen gas obtained in the electrolysis. After the results of the tests, it was concluded that carbon nanotubes can be used as working electrode, presenting success in the hydrogen production process and that the pH of the electrolytic medium has a strong influence on this process. The present work was concluded presenting an alternative way in the production of a renewable energy source.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762020000300340
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762020000300340
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s1517-707620200003.1121
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
dc.source.none.fl_str_mv Matéria (Rio de Janeiro) v.25 n.3 2020
reponame:Matéria (Rio de Janeiro. Online)
instname:Matéria (Rio de Janeiro. Online)
instacron:RLAM
instname_str Matéria (Rio de Janeiro. Online)
instacron_str RLAM
institution RLAM
reponame_str Matéria (Rio de Janeiro. Online)
collection Matéria (Rio de Janeiro. Online)
repository.name.fl_str_mv Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)
repository.mail.fl_str_mv ||materia@labh2.coppe.ufrj.br
_version_ 1752126693417418752