Cement composites reinforced by short curaua fibers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Matéria (Rio de Janeiro. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762010000200010 |
Resumo: | The development of an eco-friendly material that could reduce CO² emission and that could aggregate value to a natural fiber, setting man at the countryside and raising the income of populations from poor regions is a challenge. Lignocellulosic fibers are cheap and are a readily available reinforcement, requiring only a low degree of industrialization for their processing. The main drawback of using cement composites reinforced with lignocellulosic fibers is that the fibers can be mineralized inside the alkaline environment. In this work, Portland cement was partially replaced by metakaolinite in order to produce a matrix free from calcium hydroxide, avoiding thus the problem of fiber mineralization. Cement composites reinforced with 2, 4 and 6% of short curaua fibers, were manufactured. The composites were submitted to four pointing bending tests in order to determine their mechanical behavior. The results obtained were compared with those found for cement composites reinforced with sisal fibers. |
id |
RLAM-1_f559000986004a4d5e8c04c6e170daa3 |
---|---|
oai_identifier_str |
oai:scielo:S1517-70762010000200010 |
network_acronym_str |
RLAM-1 |
network_name_str |
Matéria (Rio de Janeiro. Online) |
repository_id_str |
|
spelling |
Cement composites reinforced by short curaua fibersCement compositescuraua fibersmechanical behaviorThe development of an eco-friendly material that could reduce CO² emission and that could aggregate value to a natural fiber, setting man at the countryside and raising the income of populations from poor regions is a challenge. Lignocellulosic fibers are cheap and are a readily available reinforcement, requiring only a low degree of industrialization for their processing. The main drawback of using cement composites reinforced with lignocellulosic fibers is that the fibers can be mineralized inside the alkaline environment. In this work, Portland cement was partially replaced by metakaolinite in order to produce a matrix free from calcium hydroxide, avoiding thus the problem of fiber mineralization. Cement composites reinforced with 2, 4 and 6% of short curaua fibers, were manufactured. The composites were submitted to four pointing bending tests in order to determine their mechanical behavior. The results obtained were compared with those found for cement composites reinforced with sisal fibers.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22010-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762010000200010Matéria (Rio de Janeiro) v.15 n.2 2010reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/S1517-70762010000200010info:eu-repo/semantics/openAccessd'Almeida,A.Toledo Filho,R.Melo Filho,J.eng2010-08-27T00:00:00Zoai:scielo:S1517-70762010000200010Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2010-08-27T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false |
dc.title.none.fl_str_mv |
Cement composites reinforced by short curaua fibers |
title |
Cement composites reinforced by short curaua fibers |
spellingShingle |
Cement composites reinforced by short curaua fibers d'Almeida,A. Cement composites curaua fibers mechanical behavior |
title_short |
Cement composites reinforced by short curaua fibers |
title_full |
Cement composites reinforced by short curaua fibers |
title_fullStr |
Cement composites reinforced by short curaua fibers |
title_full_unstemmed |
Cement composites reinforced by short curaua fibers |
title_sort |
Cement composites reinforced by short curaua fibers |
author |
d'Almeida,A. |
author_facet |
d'Almeida,A. Toledo Filho,R. Melo Filho,J. |
author_role |
author |
author2 |
Toledo Filho,R. Melo Filho,J. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
d'Almeida,A. Toledo Filho,R. Melo Filho,J. |
dc.subject.por.fl_str_mv |
Cement composites curaua fibers mechanical behavior |
topic |
Cement composites curaua fibers mechanical behavior |
description |
The development of an eco-friendly material that could reduce CO² emission and that could aggregate value to a natural fiber, setting man at the countryside and raising the income of populations from poor regions is a challenge. Lignocellulosic fibers are cheap and are a readily available reinforcement, requiring only a low degree of industrialization for their processing. The main drawback of using cement composites reinforced with lignocellulosic fibers is that the fibers can be mineralized inside the alkaline environment. In this work, Portland cement was partially replaced by metakaolinite in order to produce a matrix free from calcium hydroxide, avoiding thus the problem of fiber mineralization. Cement composites reinforced with 2, 4 and 6% of short curaua fibers, were manufactured. The composites were submitted to four pointing bending tests in order to determine their mechanical behavior. The results obtained were compared with those found for cement composites reinforced with sisal fibers. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762010000200010 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762010000200010 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1517-70762010000200010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
dc.source.none.fl_str_mv |
Matéria (Rio de Janeiro) v.15 n.2 2010 reponame:Matéria (Rio de Janeiro. Online) instname:Matéria (Rio de Janeiro. Online) instacron:RLAM |
instname_str |
Matéria (Rio de Janeiro. Online) |
instacron_str |
RLAM |
institution |
RLAM |
reponame_str |
Matéria (Rio de Janeiro. Online) |
collection |
Matéria (Rio de Janeiro. Online) |
repository.name.fl_str_mv |
Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online) |
repository.mail.fl_str_mv |
||materia@labh2.coppe.ufrj.br |
_version_ |
1752126687595724800 |