Production of polymeric nanofibers with different conditions of the electrospinning process

Detalhes bibliográficos
Autor(a) principal: Vaz,Bruna da Silva
Data de Publicação: 2017
Outros Autores: Costa,Jorge Alberto Vieira, Morais,Michele Greque de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Matéria (Rio de Janeiro. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762017000200514
Resumo: ABSTRACT Nanofibers are materials that present high elasticity, strength, porosity and surface-area-to-volume ratio. The electrospinning method is the most widely adopted technique for forming polymeric nanofibers due to repeatability, easy scale-up process and production of long and continuous nanofibers. This method produces nanofibers with diameters ranging from 10 nm to 1000 nm. The process is regulated by many parameters which significantly affecting the morphology of the nanofibers, and through the proper handling of these parameters are obtained desired nanofibers in morphology and diameters. Based on this, the objective of this work was to evaluate the size and morphology of nanofibers obtained by different conditions of the electrospinning process. The electrospinning technique will be utilized to produce nanofibers with polyacrylonitrile (PAN) polymer and solvent N, N-dimethylformamide (DMF). The polymer solutions (10% (w/v)) were injected through of the capillary with diameter 0.45; 0.55; 0.70 and 0.80 mm. The distances from the collector to the capillary were tested between 100 and 200 mm, voltage between 15 and 25 kV, and feed rate of the solution between 100 and 1000 µL/h. All of the tests were conducted at 22 °C with the relative humidity level controlled at 65±1%. The morphology and size of nanofibers were evaluated by Scanning Electron Microscopy (SEM). Thus, the development of nanofibers with small diameter and high pore volume facilitate bioactive molecules loading and / or transport of nutrients and wastes, and allow the polymeric nanofibers become important class of biomaterials.
id RLAM-1_fc866c99caea589dc6438a08428d25c2
oai_identifier_str oai:scielo:S1517-70762017000200514
network_acronym_str RLAM-1
network_name_str Matéria (Rio de Janeiro. Online)
repository_id_str
spelling Production of polymeric nanofibers with different conditions of the electrospinning processelectrospinningnanotechnologyprocess parametersABSTRACT Nanofibers are materials that present high elasticity, strength, porosity and surface-area-to-volume ratio. The electrospinning method is the most widely adopted technique for forming polymeric nanofibers due to repeatability, easy scale-up process and production of long and continuous nanofibers. This method produces nanofibers with diameters ranging from 10 nm to 1000 nm. The process is regulated by many parameters which significantly affecting the morphology of the nanofibers, and through the proper handling of these parameters are obtained desired nanofibers in morphology and diameters. Based on this, the objective of this work was to evaluate the size and morphology of nanofibers obtained by different conditions of the electrospinning process. The electrospinning technique will be utilized to produce nanofibers with polyacrylonitrile (PAN) polymer and solvent N, N-dimethylformamide (DMF). The polymer solutions (10% (w/v)) were injected through of the capillary with diameter 0.45; 0.55; 0.70 and 0.80 mm. The distances from the collector to the capillary were tested between 100 and 200 mm, voltage between 15 and 25 kV, and feed rate of the solution between 100 and 1000 µL/h. All of the tests were conducted at 22 °C with the relative humidity level controlled at 65±1%. The morphology and size of nanofibers were evaluated by Scanning Electron Microscopy (SEM). Thus, the development of nanofibers with small diameter and high pore volume facilitate bioactive molecules loading and / or transport of nutrients and wastes, and allow the polymeric nanofibers become important class of biomaterials.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762017000200514Matéria (Rio de Janeiro) v.22 n.2 2017reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/s1517-707620170002.0180info:eu-repo/semantics/openAccessVaz,Bruna da SilvaCosta,Jorge Alberto VieiraMorais,Michele Greque deeng2017-09-13T00:00:00Zoai:scielo:S1517-70762017000200514Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2017-09-13T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false
dc.title.none.fl_str_mv Production of polymeric nanofibers with different conditions of the electrospinning process
title Production of polymeric nanofibers with different conditions of the electrospinning process
spellingShingle Production of polymeric nanofibers with different conditions of the electrospinning process
Vaz,Bruna da Silva
electrospinning
nanotechnology
process parameters
title_short Production of polymeric nanofibers with different conditions of the electrospinning process
title_full Production of polymeric nanofibers with different conditions of the electrospinning process
title_fullStr Production of polymeric nanofibers with different conditions of the electrospinning process
title_full_unstemmed Production of polymeric nanofibers with different conditions of the electrospinning process
title_sort Production of polymeric nanofibers with different conditions of the electrospinning process
author Vaz,Bruna da Silva
author_facet Vaz,Bruna da Silva
Costa,Jorge Alberto Vieira
Morais,Michele Greque de
author_role author
author2 Costa,Jorge Alberto Vieira
Morais,Michele Greque de
author2_role author
author
dc.contributor.author.fl_str_mv Vaz,Bruna da Silva
Costa,Jorge Alberto Vieira
Morais,Michele Greque de
dc.subject.por.fl_str_mv electrospinning
nanotechnology
process parameters
topic electrospinning
nanotechnology
process parameters
description ABSTRACT Nanofibers are materials that present high elasticity, strength, porosity and surface-area-to-volume ratio. The electrospinning method is the most widely adopted technique for forming polymeric nanofibers due to repeatability, easy scale-up process and production of long and continuous nanofibers. This method produces nanofibers with diameters ranging from 10 nm to 1000 nm. The process is regulated by many parameters which significantly affecting the morphology of the nanofibers, and through the proper handling of these parameters are obtained desired nanofibers in morphology and diameters. Based on this, the objective of this work was to evaluate the size and morphology of nanofibers obtained by different conditions of the electrospinning process. The electrospinning technique will be utilized to produce nanofibers with polyacrylonitrile (PAN) polymer and solvent N, N-dimethylformamide (DMF). The polymer solutions (10% (w/v)) were injected through of the capillary with diameter 0.45; 0.55; 0.70 and 0.80 mm. The distances from the collector to the capillary were tested between 100 and 200 mm, voltage between 15 and 25 kV, and feed rate of the solution between 100 and 1000 µL/h. All of the tests were conducted at 22 °C with the relative humidity level controlled at 65±1%. The morphology and size of nanofibers were evaluated by Scanning Electron Microscopy (SEM). Thus, the development of nanofibers with small diameter and high pore volume facilitate bioactive molecules loading and / or transport of nutrients and wastes, and allow the polymeric nanofibers become important class of biomaterials.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762017000200514
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762017000200514
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s1517-707620170002.0180
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
dc.source.none.fl_str_mv Matéria (Rio de Janeiro) v.22 n.2 2017
reponame:Matéria (Rio de Janeiro. Online)
instname:Matéria (Rio de Janeiro. Online)
instacron:RLAM
instname_str Matéria (Rio de Janeiro. Online)
instacron_str RLAM
institution RLAM
reponame_str Matéria (Rio de Janeiro. Online)
collection Matéria (Rio de Janeiro. Online)
repository.name.fl_str_mv Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)
repository.mail.fl_str_mv ||materia@labh2.coppe.ufrj.br
_version_ 1752126689766277120