Feedforward ins aiding: an investigation of maneuvers for in-flight alignment

Detalhes bibliográficos
Autor(a) principal: Waldmann,Jacques
Data de Publicação: 2007
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Sba: Controle & Automação Sociedade Brasileira de Automatica
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592007000400006
Resumo: Navigation in autonomous vehicles involves integrating measurements from on-board inertial sensors and external data collected by various sensors. In this paper, the computer-frame velocity error model is augmented with a random constant model of accelerometer bias and rate-gyro drift for use in a Kalman filter-based fusion of a low-cost rotating inertial navigation system (INS) with external position and velocity measurements. The impact of model mismatch and maneuvers on the estimation of misalignment and inertial measurement unit (IMU) error is investigated. Previously, the literature focused on analyzing the stripped observability matrix that results from applying piece-wise constant acceleration segments to a stabilized, gimbaled INS to determine the accuracy of misalignment, accelerometer bias, and rate-gyro drift estimation. However, its validation via covariance analysis neglected model mismatch. Here, a vertically undamped, three channel INS with a rotating IMU with respect to the host vehicle is simulated. Such IMU rotation does not require the accurate mechanism of a gimbaled INS (GINS) and obviates the need to maneuver away from the desired trajectory during in-flight alignment (IFA) with a strapdown IMU. In comparison with a stationary GINS at a known location, IMU rotation enhances estimation of accelerometer bias, and partially improves estimation of rate-gyro drift and misalignment. Finally, combining IMU rotation with distinct acceleration segments yields full observability, thus significantly enhancing estimation of rate-gyro drift and misalignment.
id SBA-2_97e846eedba70fddd37bbfcabefe0bf7
oai_identifier_str oai:scielo:S0103-17592007000400006
network_acronym_str SBA-2
network_name_str Sba: Controle & Automação Sociedade Brasileira de Automatica
repository_id_str
spelling Feedforward ins aiding: an investigation of maneuvers for in-flight alignmentinertial navigationin-flight alignmentsensor fusionautonomous vehiclesroboticsNavigation in autonomous vehicles involves integrating measurements from on-board inertial sensors and external data collected by various sensors. In this paper, the computer-frame velocity error model is augmented with a random constant model of accelerometer bias and rate-gyro drift for use in a Kalman filter-based fusion of a low-cost rotating inertial navigation system (INS) with external position and velocity measurements. The impact of model mismatch and maneuvers on the estimation of misalignment and inertial measurement unit (IMU) error is investigated. Previously, the literature focused on analyzing the stripped observability matrix that results from applying piece-wise constant acceleration segments to a stabilized, gimbaled INS to determine the accuracy of misalignment, accelerometer bias, and rate-gyro drift estimation. However, its validation via covariance analysis neglected model mismatch. Here, a vertically undamped, three channel INS with a rotating IMU with respect to the host vehicle is simulated. Such IMU rotation does not require the accurate mechanism of a gimbaled INS (GINS) and obviates the need to maneuver away from the desired trajectory during in-flight alignment (IFA) with a strapdown IMU. In comparison with a stationary GINS at a known location, IMU rotation enhances estimation of accelerometer bias, and partially improves estimation of rate-gyro drift and misalignment. Finally, combining IMU rotation with distinct acceleration segments yields full observability, thus significantly enhancing estimation of rate-gyro drift and misalignment.Sociedade Brasileira de Automática2007-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592007000400006Sba: Controle & Automação Sociedade Brasileira de Automatica v.18 n.4 2007reponame:Sba: Controle & Automação Sociedade Brasileira de Automaticainstname:Sociedade Brasileira de Automática (SBA)instacron:SBA10.1590/S0103-17592007000400006info:eu-repo/semantics/openAccessWaldmann,Jacqueseng2008-01-21T00:00:00Zoai:scielo:S0103-17592007000400006Revistahttps://www.sba.org.br/revista/PUBhttps://old.scielo.br/oai/scielo-oai.php||revista_sba@fee.unicamp.br1807-03450103-1759opendoar:2008-01-21T00:00Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA)false
dc.title.none.fl_str_mv Feedforward ins aiding: an investigation of maneuvers for in-flight alignment
title Feedforward ins aiding: an investigation of maneuvers for in-flight alignment
spellingShingle Feedforward ins aiding: an investigation of maneuvers for in-flight alignment
Waldmann,Jacques
inertial navigation
in-flight alignment
sensor fusion
autonomous vehicles
robotics
title_short Feedforward ins aiding: an investigation of maneuvers for in-flight alignment
title_full Feedforward ins aiding: an investigation of maneuvers for in-flight alignment
title_fullStr Feedforward ins aiding: an investigation of maneuvers for in-flight alignment
title_full_unstemmed Feedforward ins aiding: an investigation of maneuvers for in-flight alignment
title_sort Feedforward ins aiding: an investigation of maneuvers for in-flight alignment
author Waldmann,Jacques
author_facet Waldmann,Jacques
author_role author
dc.contributor.author.fl_str_mv Waldmann,Jacques
dc.subject.por.fl_str_mv inertial navigation
in-flight alignment
sensor fusion
autonomous vehicles
robotics
topic inertial navigation
in-flight alignment
sensor fusion
autonomous vehicles
robotics
description Navigation in autonomous vehicles involves integrating measurements from on-board inertial sensors and external data collected by various sensors. In this paper, the computer-frame velocity error model is augmented with a random constant model of accelerometer bias and rate-gyro drift for use in a Kalman filter-based fusion of a low-cost rotating inertial navigation system (INS) with external position and velocity measurements. The impact of model mismatch and maneuvers on the estimation of misalignment and inertial measurement unit (IMU) error is investigated. Previously, the literature focused on analyzing the stripped observability matrix that results from applying piece-wise constant acceleration segments to a stabilized, gimbaled INS to determine the accuracy of misalignment, accelerometer bias, and rate-gyro drift estimation. However, its validation via covariance analysis neglected model mismatch. Here, a vertically undamped, three channel INS with a rotating IMU with respect to the host vehicle is simulated. Such IMU rotation does not require the accurate mechanism of a gimbaled INS (GINS) and obviates the need to maneuver away from the desired trajectory during in-flight alignment (IFA) with a strapdown IMU. In comparison with a stationary GINS at a known location, IMU rotation enhances estimation of accelerometer bias, and partially improves estimation of rate-gyro drift and misalignment. Finally, combining IMU rotation with distinct acceleration segments yields full observability, thus significantly enhancing estimation of rate-gyro drift and misalignment.
publishDate 2007
dc.date.none.fl_str_mv 2007-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592007000400006
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592007000400006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-17592007000400006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Automática
publisher.none.fl_str_mv Sociedade Brasileira de Automática
dc.source.none.fl_str_mv Sba: Controle & Automação Sociedade Brasileira de Automatica v.18 n.4 2007
reponame:Sba: Controle & Automação Sociedade Brasileira de Automatica
instname:Sociedade Brasileira de Automática (SBA)
instacron:SBA
instname_str Sociedade Brasileira de Automática (SBA)
instacron_str SBA
institution SBA
reponame_str Sba: Controle & Automação Sociedade Brasileira de Automatica
collection Sba: Controle & Automação Sociedade Brasileira de Automatica
repository.name.fl_str_mv Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA)
repository.mail.fl_str_mv ||revista_sba@fee.unicamp.br
_version_ 1754824564775321600