A wavelet-based multivariable approach for fault detection in dynamic systems

Detalhes bibliográficos
Autor(a) principal: Paiva,Henrique Mohallem
Data de Publicação: 2009
Outros Autores: Galvão,Roberto Kawakami Harrop, Rodrigues,Luis
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Sba: Controle & Automação Sociedade Brasileira de Automatica
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592009000400001
Resumo: This paper presents a multivariable extension to a recently proposed wavelet-based technique for fault detection. In the original formulation, the Discrete Wavelet Transform is used to carry out dynamic consistency checks between pairs of signals within frequency subbands. For this purpose, moving average models with an integrative term are employed to reproduce the dynamics of the system in each subband under consideration. The present work introduces a new architecture allowing the use of subband models with more general multivariable structures. More specifically, a multivariable ARX (autoregressive with exogenous input) structure is adopted for each subband model. The proposed technique is illustrated in a case study involving a nonlinear simulation model for an aircraft with a sensor fault. The results show that the multivariable approach outperforms the original formulation in terms of residue amplification following the fault onset.
id SBA-2_9896ce6f8a8b96e552a3ebc3127e6166
oai_identifier_str oai:scielo:S0103-17592009000400001
network_acronym_str SBA-2
network_name_str Sba: Controle & Automação Sociedade Brasileira de Automatica
repository_id_str
spelling A wavelet-based multivariable approach for fault detection in dynamic systemsDynamic SystemsAnalytical RedundancyFault DetectionWaveletsMultivariable SystemsThis paper presents a multivariable extension to a recently proposed wavelet-based technique for fault detection. In the original formulation, the Discrete Wavelet Transform is used to carry out dynamic consistency checks between pairs of signals within frequency subbands. For this purpose, moving average models with an integrative term are employed to reproduce the dynamics of the system in each subband under consideration. The present work introduces a new architecture allowing the use of subband models with more general multivariable structures. More specifically, a multivariable ARX (autoregressive with exogenous input) structure is adopted for each subband model. The proposed technique is illustrated in a case study involving a nonlinear simulation model for an aircraft with a sensor fault. The results show that the multivariable approach outperforms the original formulation in terms of residue amplification following the fault onset.Sociedade Brasileira de Automática2009-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592009000400001Sba: Controle & Automação Sociedade Brasileira de Automatica v.20 n.4 2009reponame:Sba: Controle & Automação Sociedade Brasileira de Automaticainstname:Sociedade Brasileira de Automática (SBA)instacron:SBA10.1590/S0103-17592009000400001info:eu-repo/semantics/openAccessPaiva,Henrique MohallemGalvão,Roberto Kawakami HarropRodrigues,Luiseng2010-01-29T00:00:00Zoai:scielo:S0103-17592009000400001Revistahttps://www.sba.org.br/revista/PUBhttps://old.scielo.br/oai/scielo-oai.php||revista_sba@fee.unicamp.br1807-03450103-1759opendoar:2010-01-29T00:00Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA)false
dc.title.none.fl_str_mv A wavelet-based multivariable approach for fault detection in dynamic systems
title A wavelet-based multivariable approach for fault detection in dynamic systems
spellingShingle A wavelet-based multivariable approach for fault detection in dynamic systems
Paiva,Henrique Mohallem
Dynamic Systems
Analytical Redundancy
Fault Detection
Wavelets
Multivariable Systems
title_short A wavelet-based multivariable approach for fault detection in dynamic systems
title_full A wavelet-based multivariable approach for fault detection in dynamic systems
title_fullStr A wavelet-based multivariable approach for fault detection in dynamic systems
title_full_unstemmed A wavelet-based multivariable approach for fault detection in dynamic systems
title_sort A wavelet-based multivariable approach for fault detection in dynamic systems
author Paiva,Henrique Mohallem
author_facet Paiva,Henrique Mohallem
Galvão,Roberto Kawakami Harrop
Rodrigues,Luis
author_role author
author2 Galvão,Roberto Kawakami Harrop
Rodrigues,Luis
author2_role author
author
dc.contributor.author.fl_str_mv Paiva,Henrique Mohallem
Galvão,Roberto Kawakami Harrop
Rodrigues,Luis
dc.subject.por.fl_str_mv Dynamic Systems
Analytical Redundancy
Fault Detection
Wavelets
Multivariable Systems
topic Dynamic Systems
Analytical Redundancy
Fault Detection
Wavelets
Multivariable Systems
description This paper presents a multivariable extension to a recently proposed wavelet-based technique for fault detection. In the original formulation, the Discrete Wavelet Transform is used to carry out dynamic consistency checks between pairs of signals within frequency subbands. For this purpose, moving average models with an integrative term are employed to reproduce the dynamics of the system in each subband under consideration. The present work introduces a new architecture allowing the use of subband models with more general multivariable structures. More specifically, a multivariable ARX (autoregressive with exogenous input) structure is adopted for each subband model. The proposed technique is illustrated in a case study involving a nonlinear simulation model for an aircraft with a sensor fault. The results show that the multivariable approach outperforms the original formulation in terms of residue amplification following the fault onset.
publishDate 2009
dc.date.none.fl_str_mv 2009-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592009000400001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592009000400001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-17592009000400001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Automática
publisher.none.fl_str_mv Sociedade Brasileira de Automática
dc.source.none.fl_str_mv Sba: Controle & Automação Sociedade Brasileira de Automatica v.20 n.4 2009
reponame:Sba: Controle & Automação Sociedade Brasileira de Automatica
instname:Sociedade Brasileira de Automática (SBA)
instacron:SBA
instname_str Sociedade Brasileira de Automática (SBA)
instacron_str SBA
institution SBA
reponame_str Sba: Controle & Automação Sociedade Brasileira de Automatica
collection Sba: Controle & Automação Sociedade Brasileira de Automatica
repository.name.fl_str_mv Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA)
repository.mail.fl_str_mv ||revista_sba@fee.unicamp.br
_version_ 1754824565128691712