A wavelet-based multivariable approach for fault detection in dynamic systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Sba: Controle & Automação Sociedade Brasileira de Automatica |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592009000400001 |
Resumo: | This paper presents a multivariable extension to a recently proposed wavelet-based technique for fault detection. In the original formulation, the Discrete Wavelet Transform is used to carry out dynamic consistency checks between pairs of signals within frequency subbands. For this purpose, moving average models with an integrative term are employed to reproduce the dynamics of the system in each subband under consideration. The present work introduces a new architecture allowing the use of subband models with more general multivariable structures. More specifically, a multivariable ARX (autoregressive with exogenous input) structure is adopted for each subband model. The proposed technique is illustrated in a case study involving a nonlinear simulation model for an aircraft with a sensor fault. The results show that the multivariable approach outperforms the original formulation in terms of residue amplification following the fault onset. |
id |
SBA-2_9896ce6f8a8b96e552a3ebc3127e6166 |
---|---|
oai_identifier_str |
oai:scielo:S0103-17592009000400001 |
network_acronym_str |
SBA-2 |
network_name_str |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
repository_id_str |
|
spelling |
A wavelet-based multivariable approach for fault detection in dynamic systemsDynamic SystemsAnalytical RedundancyFault DetectionWaveletsMultivariable SystemsThis paper presents a multivariable extension to a recently proposed wavelet-based technique for fault detection. In the original formulation, the Discrete Wavelet Transform is used to carry out dynamic consistency checks between pairs of signals within frequency subbands. For this purpose, moving average models with an integrative term are employed to reproduce the dynamics of the system in each subband under consideration. The present work introduces a new architecture allowing the use of subband models with more general multivariable structures. More specifically, a multivariable ARX (autoregressive with exogenous input) structure is adopted for each subband model. The proposed technique is illustrated in a case study involving a nonlinear simulation model for an aircraft with a sensor fault. The results show that the multivariable approach outperforms the original formulation in terms of residue amplification following the fault onset.Sociedade Brasileira de Automática2009-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592009000400001Sba: Controle & Automação Sociedade Brasileira de Automatica v.20 n.4 2009reponame:Sba: Controle & Automação Sociedade Brasileira de Automaticainstname:Sociedade Brasileira de Automática (SBA)instacron:SBA10.1590/S0103-17592009000400001info:eu-repo/semantics/openAccessPaiva,Henrique MohallemGalvão,Roberto Kawakami HarropRodrigues,Luiseng2010-01-29T00:00:00Zoai:scielo:S0103-17592009000400001Revistahttps://www.sba.org.br/revista/PUBhttps://old.scielo.br/oai/scielo-oai.php||revista_sba@fee.unicamp.br1807-03450103-1759opendoar:2010-01-29T00:00Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA)false |
dc.title.none.fl_str_mv |
A wavelet-based multivariable approach for fault detection in dynamic systems |
title |
A wavelet-based multivariable approach for fault detection in dynamic systems |
spellingShingle |
A wavelet-based multivariable approach for fault detection in dynamic systems Paiva,Henrique Mohallem Dynamic Systems Analytical Redundancy Fault Detection Wavelets Multivariable Systems |
title_short |
A wavelet-based multivariable approach for fault detection in dynamic systems |
title_full |
A wavelet-based multivariable approach for fault detection in dynamic systems |
title_fullStr |
A wavelet-based multivariable approach for fault detection in dynamic systems |
title_full_unstemmed |
A wavelet-based multivariable approach for fault detection in dynamic systems |
title_sort |
A wavelet-based multivariable approach for fault detection in dynamic systems |
author |
Paiva,Henrique Mohallem |
author_facet |
Paiva,Henrique Mohallem Galvão,Roberto Kawakami Harrop Rodrigues,Luis |
author_role |
author |
author2 |
Galvão,Roberto Kawakami Harrop Rodrigues,Luis |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Paiva,Henrique Mohallem Galvão,Roberto Kawakami Harrop Rodrigues,Luis |
dc.subject.por.fl_str_mv |
Dynamic Systems Analytical Redundancy Fault Detection Wavelets Multivariable Systems |
topic |
Dynamic Systems Analytical Redundancy Fault Detection Wavelets Multivariable Systems |
description |
This paper presents a multivariable extension to a recently proposed wavelet-based technique for fault detection. In the original formulation, the Discrete Wavelet Transform is used to carry out dynamic consistency checks between pairs of signals within frequency subbands. For this purpose, moving average models with an integrative term are employed to reproduce the dynamics of the system in each subband under consideration. The present work introduces a new architecture allowing the use of subband models with more general multivariable structures. More specifically, a multivariable ARX (autoregressive with exogenous input) structure is adopted for each subband model. The proposed technique is illustrated in a case study involving a nonlinear simulation model for an aircraft with a sensor fault. The results show that the multivariable approach outperforms the original formulation in terms of residue amplification following the fault onset. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592009000400001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592009000400001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-17592009000400001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Automática |
publisher.none.fl_str_mv |
Sociedade Brasileira de Automática |
dc.source.none.fl_str_mv |
Sba: Controle & Automação Sociedade Brasileira de Automatica v.20 n.4 2009 reponame:Sba: Controle & Automação Sociedade Brasileira de Automatica instname:Sociedade Brasileira de Automática (SBA) instacron:SBA |
instname_str |
Sociedade Brasileira de Automática (SBA) |
instacron_str |
SBA |
institution |
SBA |
reponame_str |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
collection |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
repository.name.fl_str_mv |
Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA) |
repository.mail.fl_str_mv |
||revista_sba@fee.unicamp.br |
_version_ |
1754824565128691712 |