On the estimation of robust stability regions for nonlinear systems with saturation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Sba: Controle & Automação Sociedade Brasileira de Automatica |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592004000300003 |
Resumo: | This paper addresses the problem of determining robust stability regions for a class of nonlinear systems with time-invariant uncertainties subject to actuator saturation. The unforced nonlinear system is represented by differential-algebraic equations where the system matrices are allowed to be rational functions of the state and uncertain parameters, and the saturation nonlinearity is modelled by a sector bound condition. For this class of systems, local stability conditions in terms of linear matrix inequalities are derived based on polynomial Lyapunov functions in which the Lyapunov matrix is a quadratic function of the state and uncertain parameters. To estimate a robust stability region is considered the largest level surface of the Lyapunov function belonging to a given polytopic region of state. A numerical example is used to demonstrate the approach. |
id |
SBA-2_d4cd9964026eac9faebd694859a7188f |
---|---|
oai_identifier_str |
oai:scielo:S0103-17592004000300003 |
network_acronym_str |
SBA-2 |
network_name_str |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
repository_id_str |
|
spelling |
On the estimation of robust stability regions for nonlinear systems with saturationNonlinear systemsstability regionuncertaintyconvex optimizationsaturationThis paper addresses the problem of determining robust stability regions for a class of nonlinear systems with time-invariant uncertainties subject to actuator saturation. The unforced nonlinear system is represented by differential-algebraic equations where the system matrices are allowed to be rational functions of the state and uncertain parameters, and the saturation nonlinearity is modelled by a sector bound condition. For this class of systems, local stability conditions in terms of linear matrix inequalities are derived based on polynomial Lyapunov functions in which the Lyapunov matrix is a quadratic function of the state and uncertain parameters. To estimate a robust stability region is considered the largest level surface of the Lyapunov function belonging to a given polytopic region of state. A numerical example is used to demonstrate the approach.Sociedade Brasileira de Automática2004-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592004000300003Sba: Controle & Automação Sociedade Brasileira de Automatica v.15 n.3 2004reponame:Sba: Controle & Automação Sociedade Brasileira de Automaticainstname:Sociedade Brasileira de Automática (SBA)instacron:SBA10.1590/S0103-17592004000300003info:eu-repo/semantics/openAccessCoutinho,Daniel F.Pagano,Daniel J.Trofino,Alexandreeng2004-11-22T00:00:00Zoai:scielo:S0103-17592004000300003Revistahttps://www.sba.org.br/revista/PUBhttps://old.scielo.br/oai/scielo-oai.php||revista_sba@fee.unicamp.br1807-03450103-1759opendoar:2004-11-22T00:00Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA)false |
dc.title.none.fl_str_mv |
On the estimation of robust stability regions for nonlinear systems with saturation |
title |
On the estimation of robust stability regions for nonlinear systems with saturation |
spellingShingle |
On the estimation of robust stability regions for nonlinear systems with saturation Coutinho,Daniel F. Nonlinear systems stability region uncertainty convex optimization saturation |
title_short |
On the estimation of robust stability regions for nonlinear systems with saturation |
title_full |
On the estimation of robust stability regions for nonlinear systems with saturation |
title_fullStr |
On the estimation of robust stability regions for nonlinear systems with saturation |
title_full_unstemmed |
On the estimation of robust stability regions for nonlinear systems with saturation |
title_sort |
On the estimation of robust stability regions for nonlinear systems with saturation |
author |
Coutinho,Daniel F. |
author_facet |
Coutinho,Daniel F. Pagano,Daniel J. Trofino,Alexandre |
author_role |
author |
author2 |
Pagano,Daniel J. Trofino,Alexandre |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Coutinho,Daniel F. Pagano,Daniel J. Trofino,Alexandre |
dc.subject.por.fl_str_mv |
Nonlinear systems stability region uncertainty convex optimization saturation |
topic |
Nonlinear systems stability region uncertainty convex optimization saturation |
description |
This paper addresses the problem of determining robust stability regions for a class of nonlinear systems with time-invariant uncertainties subject to actuator saturation. The unforced nonlinear system is represented by differential-algebraic equations where the system matrices are allowed to be rational functions of the state and uncertain parameters, and the saturation nonlinearity is modelled by a sector bound condition. For this class of systems, local stability conditions in terms of linear matrix inequalities are derived based on polynomial Lyapunov functions in which the Lyapunov matrix is a quadratic function of the state and uncertain parameters. To estimate a robust stability region is considered the largest level surface of the Lyapunov function belonging to a given polytopic region of state. A numerical example is used to demonstrate the approach. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592004000300003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592004000300003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-17592004000300003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Automática |
publisher.none.fl_str_mv |
Sociedade Brasileira de Automática |
dc.source.none.fl_str_mv |
Sba: Controle & Automação Sociedade Brasileira de Automatica v.15 n.3 2004 reponame:Sba: Controle & Automação Sociedade Brasileira de Automatica instname:Sociedade Brasileira de Automática (SBA) instacron:SBA |
instname_str |
Sociedade Brasileira de Automática (SBA) |
instacron_str |
SBA |
institution |
SBA |
reponame_str |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
collection |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
repository.name.fl_str_mv |
Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA) |
repository.mail.fl_str_mv |
||revista_sba@fee.unicamp.br |
_version_ |
1754824564283539456 |