Virtual reality approach for metabolic pathways teaching

Detalhes bibliográficos
Autor(a) principal: Vega Garzón, Juan Carlos
Data de Publicação: 2018
Outros Autores: Magrini, Marcio, Galembeck, Eduardo
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Ensino de Bioquímica
Texto Completo: http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/730
Resumo: Visual literacy is the ability to understand (read) and use (write) images and to think and learn regarding images (both static and moving). Visual literacy and visualization are key learning components in the biochemistry because that science uses models of molecules to explain how cells work. Many studies have shown that visualization technologies (VT) can be useful to develop essential visual literacy. The term “virtual reality” refers to immersive, interactive, multi-sensory, viewer-centered, three-dimensional computer generated environments and the combination of technologies required to build these environments. We design a Virtual Reality (VR) application named VRMET to help the development of visual literacy skills to understand and represent biochemical concepts. VRMET app was developed using Unity3D, Vuforia Augmented Reality SDK and Google VR SDK for Unity. 3D molecules were obtained from Protein Data Bank and ChemSpider and optimized using Blender. VRMET uses a 3D scaled animal cell model. VRMET requires a device with a camera. The user can get the App from the Google Play Store. VRMET has two different scenes: the Augmented reality (AR) scene and the Virtual Reality (VR) scene. AR allows visualizing, from various angles, a scale model of an animal cell. VR allows one to realize a biochemical pathway within the cellular model, visualizing each one of the organelles and observing each of the reactions of glycolysis and the Krebs cycle. VRMET allows students to visualize the molecular structure of substrates and products, thus perceiving changes in each molecule along the metabolic pathway. It also allows observing where in the cell each metabolic pathway occurs.
id SBBQM-1_7d49996d49411bed306a9d98d5b2b4e8
oai_identifier_str oai:ojs.bioquimica.org.br:article/730
network_acronym_str SBBQM-1
network_name_str Revista de Ensino de Bioquímica
repository_id_str
spelling Virtual reality approach for metabolic pathways teachingRealidade virtual no ensino de vias metabólicasSoftware educacionalVias metabólicas; Realidade virtual; Aprendizagem ativaVisual literacy is the ability to understand (read) and use (write) images and to think and learn regarding images (both static and moving). Visual literacy and visualization are key learning components in the biochemistry because that science uses models of molecules to explain how cells work. Many studies have shown that visualization technologies (VT) can be useful to develop essential visual literacy. The term “virtual reality” refers to immersive, interactive, multi-sensory, viewer-centered, three-dimensional computer generated environments and the combination of technologies required to build these environments. We design a Virtual Reality (VR) application named VRMET to help the development of visual literacy skills to understand and represent biochemical concepts. VRMET app was developed using Unity3D, Vuforia Augmented Reality SDK and Google VR SDK for Unity. 3D molecules were obtained from Protein Data Bank and ChemSpider and optimized using Blender. VRMET uses a 3D scaled animal cell model. VRMET requires a device with a camera. The user can get the App from the Google Play Store. VRMET has two different scenes: the Augmented reality (AR) scene and the Virtual Reality (VR) scene. AR allows visualizing, from various angles, a scale model of an animal cell. VR allows one to realize a biochemical pathway within the cellular model, visualizing each one of the organelles and observing each of the reactions of glycolysis and the Krebs cycle. VRMET allows students to visualize the molecular structure of substrates and products, thus perceiving changes in each molecule along the metabolic pathway. It also allows observing where in the cell each metabolic pathway occurs.A literacia visual é a capacidade de compreender (ler) e usar (escrever) imagens e de pensar e aprender usando imagens (estáticas ou em movimento). A literacia visual e a visualização são componentes de aprendizagem chave na Bioquímica, porque essa ciência usa modelos de moléculas para explicar como as células funcionam. Muitos estudos têm mostrado que as tecnologias de visualização (TV) podem ser úteis para desenvolver a literacia visual. O termo "realidade virtual" pode ser definido como um ambiente tridimensional imersivo, interativo, multissensorial, centrado no espectador e gerado por computador que leva em conta a combinação de tecnologias necessárias para construir esses ambientes. Nós projetamos um aplicativo de Realidade Virtual (RV) chamado VRMET para ajudar no desenvolvimento de habilidades de literacia visual para entender e representar conceitos bioquímicos. O aplicativo VRMET foi desenvolvido usando o Unity3D, o SDK de realidade aumentada da Vuforia  e o SDK do Google VR para Unity. As moléculas 3D foram obtidas da Protein Data Bank e ChemSpider e optimizadas utilizando o Blender. O VRMET usa um modelo 3D a escala de uma célula animal. VRMET requer um dispositivo com câmera. O usuário pode obter a App da Google Play Store. O VRMET tem duas cenas diferentes: a cena de realidade aumentada (RA) e uma cena da realidade virtual (RV). A cena de RA permite visualizar, desde vários ângulos diferentes um modelo em escala de uma célula animal. A cena RV permite acompanhar cada uma das reações da glicólise e ciclo do Krebs dentro do modelo celular. O VRMET permite que os alunos visualizem a estrutura molecular de substratos e produtos, percebendo assim as mudanças em cada molécula ao longo da via metabólica. Também permite observar onde ocorre cada via metabólica.Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBqCNPq, PNPD CAPES e Colciencias/ColombiaCNPq, PNPD CAPES e Colciencias/ColombiaVega Garzón, Juan CarlosMagrini, MarcioGalembeck, Eduardo2018-09-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://bioquimica.org.br/revista/ojs/index.php/REB/article/view/73010.16923/reb.v16i1.730Revista de Ensino de Bioquímica; v. 16, n. 1 (2018): REB: (Jan-Jun); 40-50Revista de Enseñanza de Bioquímica; v. 16, n. 1 (2018): REB: (Jan-Jun); 40-50Journal of Biochemistry Education; v. 16, n. 1 (2018): REB: (Jan-Jun); 40-50Revista de Ensino de Bioquímica; v. 16, n. 1 (2018): REB: (Jan-Jun); 40-502318-8790reponame:Revista de Ensino de Bioquímicainstname:Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)instacron:SBBQMporhttp://bioquimica.org.br/revista/ojs/index.php/REB/article/view/730/634/*ref*/Balo A, Wang M and Ernst O. Accessible virtual reality of biomolecular structural models using the Autodesk Molecule Viewer. Nature Methods. 2017; 4 (12): 1122-1123./*ref*/Monova T, Alexeev A and Kossekova G. Virtual models for interactive e-learning in Medical Biochemistry. Procedia Social and Behavioral Sciences. 2010; 2: 1493–1497./*ref*/Tan S., Waugh R. (2013) Use of Virtual-Reality in Teaching and Learning Molecular Biology. In: Cai Y. (eds) 3D Immersive and Interactive Learning. Springer, Singapore./*ref*/McClean P, Johnson C, Rogers R, Daniels L, Reber J, Slator B, Terpstra J and Whitey A. Molecular and Cellular Biology Animations: Development and Impact on Student Learning. Cell Biology Education. 2005; 4: 169-179./*ref*/Towns M, Raker J, Becker N, Harlea M and Sutcliffec J. The biochemistry tetrahedron and the development of the taxonomy of biochemistry external representations (TOBER). Chem. Educ. Res. Pract. 2012; 13: 296 – 306./*ref*/Schönborn K, Anderson T. The Importance of Visual Literacy in the Education of Biochemists. Biochem. Mol. Biol. Educ. 2006; 34: 94-102./*ref*/Mnguni L, Schönborn K and Anderson T. Assessment of visualisation skills in biochemistry students. South African Journal of Science. 2016; 112 (9-10): 1-8./*ref*/Bleed R. Visual literacy in higher education. ELI Explorations, 2005./*ref*/Mazuryk T, Gervautz M. Virtual reality-history, applications, technology and future. 1996./*ref*/McGraw J, Zhang W, Luginbuhl A, Takahashi G, Fasker F and Chopra G. Virtual Reality Environment to Visualize and Manipulate Molecular Structures. Biophysical Journal. 2018; 114 (3): 184a./*ref*/Cibulka J, Giannoumis G. Augmented and Virtual Reality for Engineering Education. Conference: Conference: Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58) Reykjavik, Iceland, September 25th – 27th, 2017./*ref*/García-Ruiz M, Bustos-Mendoza C, Andrade-Aréchiga M, Acosta-Díaz R. Panorama de la realidad virtual aplicada a la enseñanza de propiedades moleculares. 2006; Educación Química 17(1}: 114-12, 54-51.Campinas, São Paulo, BrasilDireitos autorais 2018 Revista de Ensino de Bioquímicahttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccess2022-03-25T17:24:28Zoai:ojs.bioquimica.org.br:article/730Revistahttp://bioquimica.org.br/revista/ojs/index.php/REBONGhttp://bioquimica.org.br/revista/ojs/index.php/REB/oaicontato@bioquimica.org.br||ensinodebioquimica@gmail.com2318-87901677-2318opendoar:2022-03-25T17:24:28Revista de Ensino de Bioquímica - Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)false
dc.title.none.fl_str_mv Virtual reality approach for metabolic pathways teaching
Realidade virtual no ensino de vias metabólicas
title Virtual reality approach for metabolic pathways teaching
spellingShingle Virtual reality approach for metabolic pathways teaching
Vega Garzón, Juan Carlos
Software educacional
Vias metabólicas; Realidade virtual; Aprendizagem ativa
title_short Virtual reality approach for metabolic pathways teaching
title_full Virtual reality approach for metabolic pathways teaching
title_fullStr Virtual reality approach for metabolic pathways teaching
title_full_unstemmed Virtual reality approach for metabolic pathways teaching
title_sort Virtual reality approach for metabolic pathways teaching
author Vega Garzón, Juan Carlos
author_facet Vega Garzón, Juan Carlos
Magrini, Marcio
Galembeck, Eduardo
author_role author
author2 Magrini, Marcio
Galembeck, Eduardo
author2_role author
author
dc.contributor.none.fl_str_mv CNPq, PNPD CAPES e Colciencias/Colombia
CNPq, PNPD CAPES e Colciencias/Colombia
dc.contributor.author.fl_str_mv Vega Garzón, Juan Carlos
Magrini, Marcio
Galembeck, Eduardo
dc.subject.none.fl_str_mv

dc.subject.por.fl_str_mv Software educacional
Vias metabólicas; Realidade virtual; Aprendizagem ativa
topic Software educacional
Vias metabólicas; Realidade virtual; Aprendizagem ativa
description Visual literacy is the ability to understand (read) and use (write) images and to think and learn regarding images (both static and moving). Visual literacy and visualization are key learning components in the biochemistry because that science uses models of molecules to explain how cells work. Many studies have shown that visualization technologies (VT) can be useful to develop essential visual literacy. The term “virtual reality” refers to immersive, interactive, multi-sensory, viewer-centered, three-dimensional computer generated environments and the combination of technologies required to build these environments. We design a Virtual Reality (VR) application named VRMET to help the development of visual literacy skills to understand and represent biochemical concepts. VRMET app was developed using Unity3D, Vuforia Augmented Reality SDK and Google VR SDK for Unity. 3D molecules were obtained from Protein Data Bank and ChemSpider and optimized using Blender. VRMET uses a 3D scaled animal cell model. VRMET requires a device with a camera. The user can get the App from the Google Play Store. VRMET has two different scenes: the Augmented reality (AR) scene and the Virtual Reality (VR) scene. AR allows visualizing, from various angles, a scale model of an animal cell. VR allows one to realize a biochemical pathway within the cellular model, visualizing each one of the organelles and observing each of the reactions of glycolysis and the Krebs cycle. VRMET allows students to visualize the molecular structure of substrates and products, thus perceiving changes in each molecule along the metabolic pathway. It also allows observing where in the cell each metabolic pathway occurs.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-21
dc.type.none.fl_str_mv





dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/730
10.16923/reb.v16i1.730
url http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/730
identifier_str_mv 10.16923/reb.v16i1.730
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://bioquimica.org.br/revista/ojs/index.php/REB/article/view/730/634
/*ref*/Balo A, Wang M and Ernst O. Accessible virtual reality of biomolecular structural models using the Autodesk Molecule Viewer. Nature Methods. 2017; 4 (12): 1122-1123.
/*ref*/Monova T, Alexeev A and Kossekova G. Virtual models for interactive e-learning in Medical Biochemistry. Procedia Social and Behavioral Sciences. 2010; 2: 1493–1497.
/*ref*/Tan S., Waugh R. (2013) Use of Virtual-Reality in Teaching and Learning Molecular Biology. In: Cai Y. (eds) 3D Immersive and Interactive Learning. Springer, Singapore.
/*ref*/McClean P, Johnson C, Rogers R, Daniels L, Reber J, Slator B, Terpstra J and Whitey A. Molecular and Cellular Biology Animations: Development and Impact on Student Learning. Cell Biology Education. 2005; 4: 169-179.
/*ref*/Towns M, Raker J, Becker N, Harlea M and Sutcliffec J. The biochemistry tetrahedron and the development of the taxonomy of biochemistry external representations (TOBER). Chem. Educ. Res. Pract. 2012; 13: 296 – 306.
/*ref*/Schönborn K, Anderson T. The Importance of Visual Literacy in the Education of Biochemists. Biochem. Mol. Biol. Educ. 2006; 34: 94-102.
/*ref*/Mnguni L, Schönborn K and Anderson T. Assessment of visualisation skills in biochemistry students. South African Journal of Science. 2016; 112 (9-10): 1-8.
/*ref*/Bleed R. Visual literacy in higher education. ELI Explorations, 2005.
/*ref*/Mazuryk T, Gervautz M. Virtual reality-history, applications, technology and future. 1996.
/*ref*/McGraw J, Zhang W, Luginbuhl A, Takahashi G, Fasker F and Chopra G. Virtual Reality Environment to Visualize and Manipulate Molecular Structures. Biophysical Journal. 2018; 114 (3): 184a.
/*ref*/Cibulka J, Giannoumis G. Augmented and Virtual Reality for Engineering Education. Conference: Conference: Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58) Reykjavik, Iceland, September 25th – 27th, 2017.
/*ref*/García-Ruiz M, Bustos-Mendoza C, Andrade-Aréchiga M, Acosta-Díaz R. Panorama de la realidad virtual aplicada a la enseñanza de propiedades moleculares. 2006; Educación Química 17(1}: 114-12, 54-51.
dc.rights.driver.fl_str_mv Direitos autorais 2018 Revista de Ensino de Bioquímica
http://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2018 Revista de Ensino de Bioquímica
http://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv


Campinas, São Paulo, Brasil


dc.publisher.none.fl_str_mv Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq
publisher.none.fl_str_mv Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq
dc.source.none.fl_str_mv Revista de Ensino de Bioquímica; v. 16, n. 1 (2018): REB: (Jan-Jun); 40-50
Revista de Enseñanza de Bioquímica; v. 16, n. 1 (2018): REB: (Jan-Jun); 40-50
Journal of Biochemistry Education; v. 16, n. 1 (2018): REB: (Jan-Jun); 40-50
Revista de Ensino de Bioquímica; v. 16, n. 1 (2018): REB: (Jan-Jun); 40-50
2318-8790
reponame:Revista de Ensino de Bioquímica
instname:Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)
instacron:SBBQM
instname_str Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)
instacron_str SBBQM
institution SBBQM
reponame_str Revista de Ensino de Bioquímica
collection Revista de Ensino de Bioquímica
repository.name.fl_str_mv Revista de Ensino de Bioquímica - Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq)
repository.mail.fl_str_mv contato@bioquimica.org.br||ensinodebioquimica@gmail.com
_version_ 1752126677328068608