Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats

Detalhes bibliográficos
Autor(a) principal: Durmaz,Selim
Data de Publicação: 2021
Outros Autores: Kurtoğlu,Tünay, Barbarus,Emin, Çetin,Nesibe Kahraman, Yılmaz,Mustafa, Rahman,Ömer Faruk, Abacıgil,Filiz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Cardiovascular Surgery (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-76382021000400515
Resumo: Abstract Objectives: Ischemia-reperfusion injury is an important cause of multiple organ failure in cardiovascular surgery. Our aim is to investigate the effect of the probiotic Saccharomyces boulardii on oxidative stress, inflammatory response, and lung injury in an experimental model of aortic clamping. Methods: Twenty-one Wistar rats were randomized into three groups (n=7). Control group animals received saline gavage for a week before undergoing median laparotomy. In other groups, supraceliac aorta was clamped for 45 minutes to induce ischemia followed by reperfusion for 60 minutes. In the ischemia-reperfusion group, saline gavage was given preoperatively for one week. Ischemia-reperfusion+probiotic group rats received probiotic gavage for seven days before aortic clamping. The levels of oxidative stress markers and pro-inflammatory cytokines were determined in both serum and lung tissue samples. Ileum and lung tissues were harvested for histological examination. Results: Ischemia-reperfusion caused severe oxidative damage and inflammation evident by significant increases in malondialdehyde and cytokine levels (tumor necrosis factor alpha and interleukin-1 beta) and decreased glutathione levels in both serum and lung tissues. There was severe histological tissue damage to the lung and ileum in the ischemia-reperfusion group. Probiotic pretreatment before aortic clamping caused significant suppression of increases in serum and lung tissue malondialdehyde and tumor necrosis factor alpha levels. Histological damage scores in tissue samples decreased in the ischemia-reperfusion+probiotic group (P<0,005). Conclusions: Oral supplementation of probiotic S. boulardii before supraceliac aortic ischemia-reperfusion in rats alleviates lung injury by reducing oxidative stress, intestinal cellular damage, and modulation of inflammatory processes.
id SBCCV-1_8330e00b80f5a09816efb36bdafde0f1
oai_identifier_str oai:scielo:S0102-76382021000400515
network_acronym_str SBCCV-1
network_name_str Brazilian Journal of Cardiovascular Surgery (Online)
repository_id_str
spelling Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in RatsProbioticsReperfusion InjuryOxidative StressCytokinesLung InjuryMultiple Organ FailureSaccharomyces boulardiiAbstract Objectives: Ischemia-reperfusion injury is an important cause of multiple organ failure in cardiovascular surgery. Our aim is to investigate the effect of the probiotic Saccharomyces boulardii on oxidative stress, inflammatory response, and lung injury in an experimental model of aortic clamping. Methods: Twenty-one Wistar rats were randomized into three groups (n=7). Control group animals received saline gavage for a week before undergoing median laparotomy. In other groups, supraceliac aorta was clamped for 45 minutes to induce ischemia followed by reperfusion for 60 minutes. In the ischemia-reperfusion group, saline gavage was given preoperatively for one week. Ischemia-reperfusion+probiotic group rats received probiotic gavage for seven days before aortic clamping. The levels of oxidative stress markers and pro-inflammatory cytokines were determined in both serum and lung tissue samples. Ileum and lung tissues were harvested for histological examination. Results: Ischemia-reperfusion caused severe oxidative damage and inflammation evident by significant increases in malondialdehyde and cytokine levels (tumor necrosis factor alpha and interleukin-1 beta) and decreased glutathione levels in both serum and lung tissues. There was severe histological tissue damage to the lung and ileum in the ischemia-reperfusion group. Probiotic pretreatment before aortic clamping caused significant suppression of increases in serum and lung tissue malondialdehyde and tumor necrosis factor alpha levels. Histological damage scores in tissue samples decreased in the ischemia-reperfusion+probiotic group (P<0,005). Conclusions: Oral supplementation of probiotic S. boulardii before supraceliac aortic ischemia-reperfusion in rats alleviates lung injury by reducing oxidative stress, intestinal cellular damage, and modulation of inflammatory processes.Sociedade Brasileira de Cirurgia Cardiovascular2021-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-76382021000400515Brazilian Journal of Cardiovascular Surgery v.36 n.4 2021reponame:Brazilian Journal of Cardiovascular Surgery (Online)instname:Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)instacron:SBCCV10.21470/1678-9741-2020-0153info:eu-repo/semantics/openAccessDurmaz,SelimKurtoğlu,TünayBarbarus,EminÇetin,Nesibe KahramanYılmaz,MustafaRahman,Ömer FarukAbacıgil,Filizeng2021-10-15T00:00:00Zoai:scielo:S0102-76382021000400515Revistahttp://www.rbccv.org.br/https://old.scielo.br/oai/scielo-oai.php||rosangela.monteiro@incor.usp.br|| domingo@braile.com.br|| brandau@braile.com.br1678-97410102-7638opendoar:2021-10-15T00:00Brazilian Journal of Cardiovascular Surgery (Online) - Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)false
dc.title.none.fl_str_mv Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats
title Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats
spellingShingle Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats
Durmaz,Selim
Probiotics
Reperfusion Injury
Oxidative Stress
Cytokines
Lung Injury
Multiple Organ Failure
Saccharomyces boulardii
title_short Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats
title_full Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats
title_fullStr Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats
title_full_unstemmed Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats
title_sort Probiotic Saccharomyces boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats
author Durmaz,Selim
author_facet Durmaz,Selim
Kurtoğlu,Tünay
Barbarus,Emin
Çetin,Nesibe Kahraman
Yılmaz,Mustafa
Rahman,Ömer Faruk
Abacıgil,Filiz
author_role author
author2 Kurtoğlu,Tünay
Barbarus,Emin
Çetin,Nesibe Kahraman
Yılmaz,Mustafa
Rahman,Ömer Faruk
Abacıgil,Filiz
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Durmaz,Selim
Kurtoğlu,Tünay
Barbarus,Emin
Çetin,Nesibe Kahraman
Yılmaz,Mustafa
Rahman,Ömer Faruk
Abacıgil,Filiz
dc.subject.por.fl_str_mv Probiotics
Reperfusion Injury
Oxidative Stress
Cytokines
Lung Injury
Multiple Organ Failure
Saccharomyces boulardii
topic Probiotics
Reperfusion Injury
Oxidative Stress
Cytokines
Lung Injury
Multiple Organ Failure
Saccharomyces boulardii
description Abstract Objectives: Ischemia-reperfusion injury is an important cause of multiple organ failure in cardiovascular surgery. Our aim is to investigate the effect of the probiotic Saccharomyces boulardii on oxidative stress, inflammatory response, and lung injury in an experimental model of aortic clamping. Methods: Twenty-one Wistar rats were randomized into three groups (n=7). Control group animals received saline gavage for a week before undergoing median laparotomy. In other groups, supraceliac aorta was clamped for 45 minutes to induce ischemia followed by reperfusion for 60 minutes. In the ischemia-reperfusion group, saline gavage was given preoperatively for one week. Ischemia-reperfusion+probiotic group rats received probiotic gavage for seven days before aortic clamping. The levels of oxidative stress markers and pro-inflammatory cytokines were determined in both serum and lung tissue samples. Ileum and lung tissues were harvested for histological examination. Results: Ischemia-reperfusion caused severe oxidative damage and inflammation evident by significant increases in malondialdehyde and cytokine levels (tumor necrosis factor alpha and interleukin-1 beta) and decreased glutathione levels in both serum and lung tissues. There was severe histological tissue damage to the lung and ileum in the ischemia-reperfusion group. Probiotic pretreatment before aortic clamping caused significant suppression of increases in serum and lung tissue malondialdehyde and tumor necrosis factor alpha levels. Histological damage scores in tissue samples decreased in the ischemia-reperfusion+probiotic group (P<0,005). Conclusions: Oral supplementation of probiotic S. boulardii before supraceliac aortic ischemia-reperfusion in rats alleviates lung injury by reducing oxidative stress, intestinal cellular damage, and modulation of inflammatory processes.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-76382021000400515
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-76382021000400515
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.21470/1678-9741-2020-0153
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Cirurgia Cardiovascular
publisher.none.fl_str_mv Sociedade Brasileira de Cirurgia Cardiovascular
dc.source.none.fl_str_mv Brazilian Journal of Cardiovascular Surgery v.36 n.4 2021
reponame:Brazilian Journal of Cardiovascular Surgery (Online)
instname:Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)
instacron:SBCCV
instname_str Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)
instacron_str SBCCV
institution SBCCV
reponame_str Brazilian Journal of Cardiovascular Surgery (Online)
collection Brazilian Journal of Cardiovascular Surgery (Online)
repository.name.fl_str_mv Brazilian Journal of Cardiovascular Surgery (Online) - Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)
repository.mail.fl_str_mv ||rosangela.monteiro@incor.usp.br|| domingo@braile.com.br|| brandau@braile.com.br
_version_ 1752126602628562944