Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Planta daninha (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582020000100301 |
Resumo: | Abstract Background: Soybean cultivation has been an option used to diversify the production system and perform herbicide rotation in irrigated rice crops in the lowland soils of the Rio Grande do Sul State, southern Brazil. However, elevated salinity levels have been detected in these soils that can inhibit plant growth due to the reduction of the osmotic potential of the soil solution and can causes toxicity. The combination of stress factors in the plantation areas can intensify deleterious effects, such as changes in salinity associated with herbicides that trigger oxidative stress in crops. Objective: This study aimed to evaluate osmotic potential, cell damage, and enzyme activities of the antioxidant metabolism on soybean after treatment with herbicides and salinity stress conditions. Methods: For this purpose, completely randomized design was used in a factorial scheme with three replicates. The A factor included four herbicide treatments, as follows: control (no herbicide), sulfentrazone, S-metolachlor, and sulfentrazone + S-metolachlor. The B factor was represented by the following three salinity levels: 0 (control), 60, and 120 mM NaCl, which were applied 24 hours after soybean sowing. Results: The results showed a significant alteration in the osmotic potential of soybean plants, mainly at higher salt concentrations. Although an increase in the lipid peroxidation has been detected in some treatments, antioxidant enzyme action combined with osmotic adjustment to reduce oxidative damage were mechanisms found to be employed by plants to reduce hydrogen peroxide levels. Conclusions: We concluded that herbicide treatment, in combination with saline stress, can alter physiological and biochemical processes of soybean plants. |
id |
SBCPD-1_4d74aa78d112642f2da491778d840f04 |
---|---|
oai_identifier_str |
oai:scielo:S0100-83582020000100301 |
network_acronym_str |
SBCPD-1 |
network_name_str |
Planta daninha (Online) |
repository_id_str |
|
spelling |
Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soilGlycine maxsulfentrazoneS-metolachlorantioxidant enzymessaline stresscellular damageAbstract Background: Soybean cultivation has been an option used to diversify the production system and perform herbicide rotation in irrigated rice crops in the lowland soils of the Rio Grande do Sul State, southern Brazil. However, elevated salinity levels have been detected in these soils that can inhibit plant growth due to the reduction of the osmotic potential of the soil solution and can causes toxicity. The combination of stress factors in the plantation areas can intensify deleterious effects, such as changes in salinity associated with herbicides that trigger oxidative stress in crops. Objective: This study aimed to evaluate osmotic potential, cell damage, and enzyme activities of the antioxidant metabolism on soybean after treatment with herbicides and salinity stress conditions. Methods: For this purpose, completely randomized design was used in a factorial scheme with three replicates. The A factor included four herbicide treatments, as follows: control (no herbicide), sulfentrazone, S-metolachlor, and sulfentrazone + S-metolachlor. The B factor was represented by the following three salinity levels: 0 (control), 60, and 120 mM NaCl, which were applied 24 hours after soybean sowing. Results: The results showed a significant alteration in the osmotic potential of soybean plants, mainly at higher salt concentrations. Although an increase in the lipid peroxidation has been detected in some treatments, antioxidant enzyme action combined with osmotic adjustment to reduce oxidative damage were mechanisms found to be employed by plants to reduce hydrogen peroxide levels. Conclusions: We concluded that herbicide treatment, in combination with saline stress, can alter physiological and biochemical processes of soybean plants.Sociedade Brasileira da Ciência das Plantas Daninhas 2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582020000100301Planta Daninha v.38 2020reponame:Planta daninha (Online)instname:Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)instacron:SBCPD10.1590/s0100-83582020380100051info:eu-repo/semantics/openAccessBenedetti,LarizaScherner,AnandaC. Cuchiara,CristinaMoraes,Ítalo L.A. Avila,LuisDeuner,Sidneieng2020-09-03T00:00:00Zoai:scielo:S0100-83582020000100301Revistahttp://revistas.cpd.ufv.br/pdaninhaweb/https://old.scielo.br/oai/scielo-oai.php||rpdaninha@gmail.com1806-96810100-8358opendoar:2020-09-03T00:00Planta daninha (Online) - Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)false |
dc.title.none.fl_str_mv |
Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soil |
title |
Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soil |
spellingShingle |
Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soil Benedetti,Lariza Glycine max sulfentrazone S-metolachlor antioxidant enzymes saline stress cellular damage |
title_short |
Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soil |
title_full |
Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soil |
title_fullStr |
Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soil |
title_full_unstemmed |
Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soil |
title_sort |
Soybean plant osmotic and oxidative stress as affected by herbicide and salinity levels in soil |
author |
Benedetti,Lariza |
author_facet |
Benedetti,Lariza Scherner,Ananda C. Cuchiara,Cristina Moraes,Ítalo L. A. Avila,Luis Deuner,Sidnei |
author_role |
author |
author2 |
Scherner,Ananda C. Cuchiara,Cristina Moraes,Ítalo L. A. Avila,Luis Deuner,Sidnei |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Benedetti,Lariza Scherner,Ananda C. Cuchiara,Cristina Moraes,Ítalo L. A. Avila,Luis Deuner,Sidnei |
dc.subject.por.fl_str_mv |
Glycine max sulfentrazone S-metolachlor antioxidant enzymes saline stress cellular damage |
topic |
Glycine max sulfentrazone S-metolachlor antioxidant enzymes saline stress cellular damage |
description |
Abstract Background: Soybean cultivation has been an option used to diversify the production system and perform herbicide rotation in irrigated rice crops in the lowland soils of the Rio Grande do Sul State, southern Brazil. However, elevated salinity levels have been detected in these soils that can inhibit plant growth due to the reduction of the osmotic potential of the soil solution and can causes toxicity. The combination of stress factors in the plantation areas can intensify deleterious effects, such as changes in salinity associated with herbicides that trigger oxidative stress in crops. Objective: This study aimed to evaluate osmotic potential, cell damage, and enzyme activities of the antioxidant metabolism on soybean after treatment with herbicides and salinity stress conditions. Methods: For this purpose, completely randomized design was used in a factorial scheme with three replicates. The A factor included four herbicide treatments, as follows: control (no herbicide), sulfentrazone, S-metolachlor, and sulfentrazone + S-metolachlor. The B factor was represented by the following three salinity levels: 0 (control), 60, and 120 mM NaCl, which were applied 24 hours after soybean sowing. Results: The results showed a significant alteration in the osmotic potential of soybean plants, mainly at higher salt concentrations. Although an increase in the lipid peroxidation has been detected in some treatments, antioxidant enzyme action combined with osmotic adjustment to reduce oxidative damage were mechanisms found to be employed by plants to reduce hydrogen peroxide levels. Conclusions: We concluded that herbicide treatment, in combination with saline stress, can alter physiological and biochemical processes of soybean plants. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582020000100301 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582020000100301 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s0100-83582020380100051 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira da Ciência das Plantas Daninhas |
publisher.none.fl_str_mv |
Sociedade Brasileira da Ciência das Plantas Daninhas |
dc.source.none.fl_str_mv |
Planta Daninha v.38 2020 reponame:Planta daninha (Online) instname:Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD) instacron:SBCPD |
instname_str |
Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD) |
instacron_str |
SBCPD |
institution |
SBCPD |
reponame_str |
Planta daninha (Online) |
collection |
Planta daninha (Online) |
repository.name.fl_str_mv |
Planta daninha (Online) - Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD) |
repository.mail.fl_str_mv |
||rpdaninha@gmail.com |
_version_ |
1752126497092534272 |