Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest

Detalhes bibliográficos
Autor(a) principal: Li,Jun
Data de Publicação: 2019
Outros Autores: Wu,Zelong, Yuan,Jun
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832019000100413
Resumo: ABSTRACT The production of Camellia oleifera (oil tea), typically planted in acidic red soils in southern China, is limited by low soil fertility. Agro-farming is one way to promote soil fertility by increasing organic matter and microbial communities. To understand the impact of agro-farming activity on soil fertility, three types of agro-farming, namely, raising laying hens under forest (RLH), cultivating Lolium perenne grass under forest (LPG), and maintenance of native grass (MNG), were employed in an oil tea farm with acidic red soil in Changsha, China. Soil samples were collected from the farm to estimate microbial communities, pH, and total organic carbon (TOC) in different seasons. The results indicated that TOC and temperature were the dominant factors influencing the variations of bacterial communities, while temperature and pH affected the fungal communities in the soil. The most abundant bacterial phyla were Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi , while the most abundant fungal phyla were Ascomycota, Basidiomycota, and Zygomycota . Regardless of treatment, the bacterial richness and diversity were both low in spring, and the fungal richness and diversity in summer and autumn were higher than in spring and winter. The TOC content and pH in LPG were significantly higher than in other treatments. Microbial communities in LPG and MNG were more stable than in RLH. In summary, cultivating grass under forest treatment was the best way to improve the microenvironment with the highest TOC content and fewer pathogenic microorganisms.
id SBCS-1_2220b27de3a56df82738a363dd8066a9
oai_identifier_str oai:scielo:S0100-06832019000100413
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forestoil teaseasonsoil microbial communityhigh throughput sequencingABSTRACT The production of Camellia oleifera (oil tea), typically planted in acidic red soils in southern China, is limited by low soil fertility. Agro-farming is one way to promote soil fertility by increasing organic matter and microbial communities. To understand the impact of agro-farming activity on soil fertility, three types of agro-farming, namely, raising laying hens under forest (RLH), cultivating Lolium perenne grass under forest (LPG), and maintenance of native grass (MNG), were employed in an oil tea farm with acidic red soil in Changsha, China. Soil samples were collected from the farm to estimate microbial communities, pH, and total organic carbon (TOC) in different seasons. The results indicated that TOC and temperature were the dominant factors influencing the variations of bacterial communities, while temperature and pH affected the fungal communities in the soil. The most abundant bacterial phyla were Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi , while the most abundant fungal phyla were Ascomycota, Basidiomycota, and Zygomycota . Regardless of treatment, the bacterial richness and diversity were both low in spring, and the fungal richness and diversity in summer and autumn were higher than in spring and winter. The TOC content and pH in LPG were significantly higher than in other treatments. Microbial communities in LPG and MNG were more stable than in RLH. In summary, cultivating grass under forest treatment was the best way to improve the microenvironment with the highest TOC content and fewer pathogenic microorganisms.Sociedade Brasileira de Ciência do Solo2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832019000100413Revista Brasileira de Ciência do Solo v.43 2019reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/18069657rbcs20190044info:eu-repo/semantics/openAccessLi,JunWu,ZelongYuan,Juneng2019-10-09T00:00:00Zoai:scielo:S0100-06832019000100413Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2019-10-09T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest
title Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest
spellingShingle Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest
Li,Jun
oil tea
season
soil microbial community
high throughput sequencing
title_short Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest
title_full Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest
title_fullStr Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest
title_full_unstemmed Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest
title_sort Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest
author Li,Jun
author_facet Li,Jun
Wu,Zelong
Yuan,Jun
author_role author
author2 Wu,Zelong
Yuan,Jun
author2_role author
author
dc.contributor.author.fl_str_mv Li,Jun
Wu,Zelong
Yuan,Jun
dc.subject.por.fl_str_mv oil tea
season
soil microbial community
high throughput sequencing
topic oil tea
season
soil microbial community
high throughput sequencing
description ABSTRACT The production of Camellia oleifera (oil tea), typically planted in acidic red soils in southern China, is limited by low soil fertility. Agro-farming is one way to promote soil fertility by increasing organic matter and microbial communities. To understand the impact of agro-farming activity on soil fertility, three types of agro-farming, namely, raising laying hens under forest (RLH), cultivating Lolium perenne grass under forest (LPG), and maintenance of native grass (MNG), were employed in an oil tea farm with acidic red soil in Changsha, China. Soil samples were collected from the farm to estimate microbial communities, pH, and total organic carbon (TOC) in different seasons. The results indicated that TOC and temperature were the dominant factors influencing the variations of bacterial communities, while temperature and pH affected the fungal communities in the soil. The most abundant bacterial phyla were Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi , while the most abundant fungal phyla were Ascomycota, Basidiomycota, and Zygomycota . Regardless of treatment, the bacterial richness and diversity were both low in spring, and the fungal richness and diversity in summer and autumn were higher than in spring and winter. The TOC content and pH in LPG were significantly higher than in other treatments. Microbial communities in LPG and MNG were more stable than in RLH. In summary, cultivating grass under forest treatment was the best way to improve the microenvironment with the highest TOC content and fewer pathogenic microorganisms.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832019000100413
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832019000100413
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/18069657rbcs20190044
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.43 2019
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126522216415232