Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil

Detalhes bibliográficos
Autor(a) principal: Chavez,Luis Fernando
Data de Publicação: 2009
Outros Autores: Amado,Telmo Jorge Carneiro, Bayer,Cimélio, La Scala,Newton Junior, Escobar,Luisa Fernanda, Fiorin,Jackson Ernani, Campos,Ben-Hur Costa de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000200010
Resumo: Agricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.
id SBCS-1_2441aa89c3ea7d328c82cbd0c89ce88a
oai_identifier_str oai:scielo:S0100-06832009000200010
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazilno-tillgreenhouse gasessoil temperaturesoil moistureAgricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.Sociedade Brasileira de Ciência do Solo2009-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000200010Revista Brasileira de Ciência do Solo v.33 n.2 2009reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/S0100-06832009000200010info:eu-repo/semantics/openAccessChavez,Luis FernandoAmado,Telmo Jorge CarneiroBayer,CimélioLa Scala,Newton JuniorEscobar,Luisa FernandaFiorin,Jackson ErnaniCampos,Ben-Hur Costa deeng2009-06-25T00:00:00Zoai:scielo:S0100-06832009000200010Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2009-06-25T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil
title Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil
spellingShingle Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil
Chavez,Luis Fernando
no-till
greenhouse gases
soil temperature
soil moisture
title_short Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil
title_full Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil
title_fullStr Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil
title_full_unstemmed Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil
title_sort Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil
author Chavez,Luis Fernando
author_facet Chavez,Luis Fernando
Amado,Telmo Jorge Carneiro
Bayer,Cimélio
La Scala,Newton Junior
Escobar,Luisa Fernanda
Fiorin,Jackson Ernani
Campos,Ben-Hur Costa de
author_role author
author2 Amado,Telmo Jorge Carneiro
Bayer,Cimélio
La Scala,Newton Junior
Escobar,Luisa Fernanda
Fiorin,Jackson Ernani
Campos,Ben-Hur Costa de
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Chavez,Luis Fernando
Amado,Telmo Jorge Carneiro
Bayer,Cimélio
La Scala,Newton Junior
Escobar,Luisa Fernanda
Fiorin,Jackson Ernani
Campos,Ben-Hur Costa de
dc.subject.por.fl_str_mv no-till
greenhouse gases
soil temperature
soil moisture
topic no-till
greenhouse gases
soil temperature
soil moisture
description Agricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.
publishDate 2009
dc.date.none.fl_str_mv 2009-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000200010
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000200010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-06832009000200010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.33 n.2 2009
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126514817662976