Establishment of critical nutrient levels in soil and plant for eucalyptus

Detalhes bibliográficos
Autor(a) principal: Lima Neto,Antonio João de
Data de Publicação: 2020
Outros Autores: Neves,Júlio César Lima, Martinez,Herminia Emilia Prieto, Sousa,Jailson Silva, Fernandes,Loane Vaz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100509
Resumo: ABSTRACT The adoption of more productive and nutrient-demanding genotypes, in addition soils with low availability of nutrients of soils under forest plantations, lead high fertilizer demand and justify research that seeks to rationalize the use of these inputs. Therefore, we aimed with this research to determine classes of interpretation of soil fertility using boundary line (BL) and estimate macronutrient sufficiency ranges for eucalyptus. Fertility classes and sufficiency ranges were obtained using a database of areas cultivated with eucalyptus in the Central-East region of Minas Gerais, Brazil, totaling 689 plots, containing information on yield, leaf contents, and soil chemical properties. Scatter plots were drawn relating the mean annual increment (MAI) in trunk volume (relative) with soil organic matter (OM), phosphorus (P), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) of the 0.00-0.20 m layer. Those graphs and equations were used to estimate soil fertility classes. Leaf contents of N, P, K, Ca, and Mg were plotted with soil contents of OM, P, K+, Ca2+, and Mg2+. Using the Quadrant Diagram of the plant-soil Relationship (QDpsR) method, horizontal and vertical lines were drawn separating the cloud of points in four quadrants. With the points at the quadrants III and I, regression equations were fitted. To obtain foliar sufficiency ranges, soil values of critical and optimal levels of OM, P, K+, Ca2+, and Mg2+, obtained by BL, were substituted in the equations generated by the QDpsR method. The appropriate soil content ranges determined by BL for productivity of 47.7 m3 ha-1 yr-1 were: 24.75-38.28 g kg-1 of OM, 8.5-14.6 mg dm-3 of P, 100.0-150.35 mg dm-3 of K+, 0.77-1.47 cmolc dm-3 of Ca2+, and 0.25-0.43 cmolc dm-3 of Mg2+. Leaf content ranges determined by QDpsR are: 19.4-21.3 g kg-1 of N, 1.0-1.2 g kg-1 of P, 8.5-10.6 g kg-1 of K, 4.8-6.1 g kg-1 of Ca, and 1.9-2.4 g kg-1 of Mg. The critical levels of nutrients in the soil, obtained by the BL method, and the leaf sufficiency ranges, obtained using the QDpsR method, are similar to those existing in the literature. This indicates that this methodology is reliable in establishing standards and that the critical levels obtained can be used to improve the recommendation of fertilizers for eucalyptus.
id SBCS-1_383640ccfe9017e4ba112ef392bd9c12
oai_identifier_str oai:scielo:S0100-06832020000100509
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Establishment of critical nutrient levels in soil and plant for eucalyptusboundary linefertility classessufficiency rangesABSTRACT The adoption of more productive and nutrient-demanding genotypes, in addition soils with low availability of nutrients of soils under forest plantations, lead high fertilizer demand and justify research that seeks to rationalize the use of these inputs. Therefore, we aimed with this research to determine classes of interpretation of soil fertility using boundary line (BL) and estimate macronutrient sufficiency ranges for eucalyptus. Fertility classes and sufficiency ranges were obtained using a database of areas cultivated with eucalyptus in the Central-East region of Minas Gerais, Brazil, totaling 689 plots, containing information on yield, leaf contents, and soil chemical properties. Scatter plots were drawn relating the mean annual increment (MAI) in trunk volume (relative) with soil organic matter (OM), phosphorus (P), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) of the 0.00-0.20 m layer. Those graphs and equations were used to estimate soil fertility classes. Leaf contents of N, P, K, Ca, and Mg were plotted with soil contents of OM, P, K+, Ca2+, and Mg2+. Using the Quadrant Diagram of the plant-soil Relationship (QDpsR) method, horizontal and vertical lines were drawn separating the cloud of points in four quadrants. With the points at the quadrants III and I, regression equations were fitted. To obtain foliar sufficiency ranges, soil values of critical and optimal levels of OM, P, K+, Ca2+, and Mg2+, obtained by BL, were substituted in the equations generated by the QDpsR method. The appropriate soil content ranges determined by BL for productivity of 47.7 m3 ha-1 yr-1 were: 24.75-38.28 g kg-1 of OM, 8.5-14.6 mg dm-3 of P, 100.0-150.35 mg dm-3 of K+, 0.77-1.47 cmolc dm-3 of Ca2+, and 0.25-0.43 cmolc dm-3 of Mg2+. Leaf content ranges determined by QDpsR are: 19.4-21.3 g kg-1 of N, 1.0-1.2 g kg-1 of P, 8.5-10.6 g kg-1 of K, 4.8-6.1 g kg-1 of Ca, and 1.9-2.4 g kg-1 of Mg. The critical levels of nutrients in the soil, obtained by the BL method, and the leaf sufficiency ranges, obtained using the QDpsR method, are similar to those existing in the literature. This indicates that this methodology is reliable in establishing standards and that the critical levels obtained can be used to improve the recommendation of fertilizers for eucalyptus.Sociedade Brasileira de Ciência do Solo2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100509Revista Brasileira de Ciência do Solo v.44 2020reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.36783/18069657rbcs20190150info:eu-repo/semantics/openAccessLima Neto,Antonio João deNeves,Júlio César LimaMartinez,Herminia Emilia PrietoSousa,Jailson SilvaFernandes,Loane Vazeng2020-06-02T00:00:00Zoai:scielo:S0100-06832020000100509Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2020-06-02T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Establishment of critical nutrient levels in soil and plant for eucalyptus
title Establishment of critical nutrient levels in soil and plant for eucalyptus
spellingShingle Establishment of critical nutrient levels in soil and plant for eucalyptus
Lima Neto,Antonio João de
boundary line
fertility classes
sufficiency ranges
title_short Establishment of critical nutrient levels in soil and plant for eucalyptus
title_full Establishment of critical nutrient levels in soil and plant for eucalyptus
title_fullStr Establishment of critical nutrient levels in soil and plant for eucalyptus
title_full_unstemmed Establishment of critical nutrient levels in soil and plant for eucalyptus
title_sort Establishment of critical nutrient levels in soil and plant for eucalyptus
author Lima Neto,Antonio João de
author_facet Lima Neto,Antonio João de
Neves,Júlio César Lima
Martinez,Herminia Emilia Prieto
Sousa,Jailson Silva
Fernandes,Loane Vaz
author_role author
author2 Neves,Júlio César Lima
Martinez,Herminia Emilia Prieto
Sousa,Jailson Silva
Fernandes,Loane Vaz
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Lima Neto,Antonio João de
Neves,Júlio César Lima
Martinez,Herminia Emilia Prieto
Sousa,Jailson Silva
Fernandes,Loane Vaz
dc.subject.por.fl_str_mv boundary line
fertility classes
sufficiency ranges
topic boundary line
fertility classes
sufficiency ranges
description ABSTRACT The adoption of more productive and nutrient-demanding genotypes, in addition soils with low availability of nutrients of soils under forest plantations, lead high fertilizer demand and justify research that seeks to rationalize the use of these inputs. Therefore, we aimed with this research to determine classes of interpretation of soil fertility using boundary line (BL) and estimate macronutrient sufficiency ranges for eucalyptus. Fertility classes and sufficiency ranges were obtained using a database of areas cultivated with eucalyptus in the Central-East region of Minas Gerais, Brazil, totaling 689 plots, containing information on yield, leaf contents, and soil chemical properties. Scatter plots were drawn relating the mean annual increment (MAI) in trunk volume (relative) with soil organic matter (OM), phosphorus (P), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) of the 0.00-0.20 m layer. Those graphs and equations were used to estimate soil fertility classes. Leaf contents of N, P, K, Ca, and Mg were plotted with soil contents of OM, P, K+, Ca2+, and Mg2+. Using the Quadrant Diagram of the plant-soil Relationship (QDpsR) method, horizontal and vertical lines were drawn separating the cloud of points in four quadrants. With the points at the quadrants III and I, regression equations were fitted. To obtain foliar sufficiency ranges, soil values of critical and optimal levels of OM, P, K+, Ca2+, and Mg2+, obtained by BL, were substituted in the equations generated by the QDpsR method. The appropriate soil content ranges determined by BL for productivity of 47.7 m3 ha-1 yr-1 were: 24.75-38.28 g kg-1 of OM, 8.5-14.6 mg dm-3 of P, 100.0-150.35 mg dm-3 of K+, 0.77-1.47 cmolc dm-3 of Ca2+, and 0.25-0.43 cmolc dm-3 of Mg2+. Leaf content ranges determined by QDpsR are: 19.4-21.3 g kg-1 of N, 1.0-1.2 g kg-1 of P, 8.5-10.6 g kg-1 of K, 4.8-6.1 g kg-1 of Ca, and 1.9-2.4 g kg-1 of Mg. The critical levels of nutrients in the soil, obtained by the BL method, and the leaf sufficiency ranges, obtained using the QDpsR method, are similar to those existing in the literature. This indicates that this methodology is reliable in establishing standards and that the critical levels obtained can be used to improve the recommendation of fertilizers for eucalyptus.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100509
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100509
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.36783/18069657rbcs20190150
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.44 2020
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126522355875840