Iron Availability in Tropical Soils and Iron Uptake by Plants

Detalhes bibliográficos
Autor(a) principal: Mielki,Guilherme Furlan
Data de Publicação: 2016
Outros Autores: Novais,Roberto Ferreira, Ker,João Carlos, Vergütz,Leonardus, Castro,Gustavo Franco de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832016000100543
Resumo: ABSTRACT Given the increase in crop yields and the expansion of agriculture in low fertility soils, deficiency of micronutrients, such as iron, in plants grown in tropical soils has been observed. The aim of this study was to evaluate Fe availability and Fe uptake by corn (Zea mays L.) plants in 13 different soils, at two depths. Iron was extracted by Mehlich-1, Mehlich-3, and CaCl2 (Fe-CC) and was fractionated in forms related to low (Feo) and high (Fed) crystallinity pedogenic oxyhydroxides, and organic matter (Fep) using ammonium oxalate, dithionite-citrate, and sodium pyrophosphate, respectively. In order to relate Fe availability to soil properties and plant growth, an experiment was carried out in a semi-hydroponic system in which part of the roots developed in a nutrient solution (without Fe) and part in the soil (the only source of Fe). Forty-five days after seeding, we quantified shoot dry matter and leaf Fe concentration and content. Fed levels were high, from 5 to 132 g kg-1, and Feo and Fe-CC levels were low, indicating the predominance of Fe as crystalline oxyhydroxides and a low content of Fe readily available to plants. The extraction solutions showed significant correlations with various soil properties, many common to both, indicating that they act similarly. The correlation between the Mehlich-1 and Mehlich-3 extraction solutions was highly significant. However, these two extraction methods were inefficient in predicting Fe availability to plants. There was a positive correlation between dry matter and Fe levels in plant shoots, even within the ranges considered adequate in the soil and in the plant. Dry matter production and leaf Fe concentration and content were positively correlated with Fep concentration, indicating that the Fe fraction related to soil organic matter most contributes to Fe availability to plants.
id SBCS-1_3fe53e72e0cafe5f8c6bd87cd2492bc7
oai_identifier_str oai:scielo:S0100-06832016000100543
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Iron Availability in Tropical Soils and Iron Uptake by PlantsMehlichcorn (Zea mays)micronutrientnutrient solutionLatossoloABSTRACT Given the increase in crop yields and the expansion of agriculture in low fertility soils, deficiency of micronutrients, such as iron, in plants grown in tropical soils has been observed. The aim of this study was to evaluate Fe availability and Fe uptake by corn (Zea mays L.) plants in 13 different soils, at two depths. Iron was extracted by Mehlich-1, Mehlich-3, and CaCl2 (Fe-CC) and was fractionated in forms related to low (Feo) and high (Fed) crystallinity pedogenic oxyhydroxides, and organic matter (Fep) using ammonium oxalate, dithionite-citrate, and sodium pyrophosphate, respectively. In order to relate Fe availability to soil properties and plant growth, an experiment was carried out in a semi-hydroponic system in which part of the roots developed in a nutrient solution (without Fe) and part in the soil (the only source of Fe). Forty-five days after seeding, we quantified shoot dry matter and leaf Fe concentration and content. Fed levels were high, from 5 to 132 g kg-1, and Feo and Fe-CC levels were low, indicating the predominance of Fe as crystalline oxyhydroxides and a low content of Fe readily available to plants. The extraction solutions showed significant correlations with various soil properties, many common to both, indicating that they act similarly. The correlation between the Mehlich-1 and Mehlich-3 extraction solutions was highly significant. However, these two extraction methods were inefficient in predicting Fe availability to plants. There was a positive correlation between dry matter and Fe levels in plant shoots, even within the ranges considered adequate in the soil and in the plant. Dry matter production and leaf Fe concentration and content were positively correlated with Fep concentration, indicating that the Fe fraction related to soil organic matter most contributes to Fe availability to plants.Sociedade Brasileira de Ciência do Solo2016-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832016000100543Revista Brasileira de Ciência do Solo v.40 2016reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/18069657rbcs20150174info:eu-repo/semantics/openAccessMielki,Guilherme FurlanNovais,Roberto FerreiraKer,João CarlosVergütz,LeonardusCastro,Gustavo Franco deeng2016-10-19T00:00:00Zoai:scielo:S0100-06832016000100543Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2016-10-19T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Iron Availability in Tropical Soils and Iron Uptake by Plants
title Iron Availability in Tropical Soils and Iron Uptake by Plants
spellingShingle Iron Availability in Tropical Soils and Iron Uptake by Plants
Mielki,Guilherme Furlan
Mehlich
corn (Zea mays)
micronutrient
nutrient solution
Latossolo
title_short Iron Availability in Tropical Soils and Iron Uptake by Plants
title_full Iron Availability in Tropical Soils and Iron Uptake by Plants
title_fullStr Iron Availability in Tropical Soils and Iron Uptake by Plants
title_full_unstemmed Iron Availability in Tropical Soils and Iron Uptake by Plants
title_sort Iron Availability in Tropical Soils and Iron Uptake by Plants
author Mielki,Guilherme Furlan
author_facet Mielki,Guilherme Furlan
Novais,Roberto Ferreira
Ker,João Carlos
Vergütz,Leonardus
Castro,Gustavo Franco de
author_role author
author2 Novais,Roberto Ferreira
Ker,João Carlos
Vergütz,Leonardus
Castro,Gustavo Franco de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Mielki,Guilherme Furlan
Novais,Roberto Ferreira
Ker,João Carlos
Vergütz,Leonardus
Castro,Gustavo Franco de
dc.subject.por.fl_str_mv Mehlich
corn (Zea mays)
micronutrient
nutrient solution
Latossolo
topic Mehlich
corn (Zea mays)
micronutrient
nutrient solution
Latossolo
description ABSTRACT Given the increase in crop yields and the expansion of agriculture in low fertility soils, deficiency of micronutrients, such as iron, in plants grown in tropical soils has been observed. The aim of this study was to evaluate Fe availability and Fe uptake by corn (Zea mays L.) plants in 13 different soils, at two depths. Iron was extracted by Mehlich-1, Mehlich-3, and CaCl2 (Fe-CC) and was fractionated in forms related to low (Feo) and high (Fed) crystallinity pedogenic oxyhydroxides, and organic matter (Fep) using ammonium oxalate, dithionite-citrate, and sodium pyrophosphate, respectively. In order to relate Fe availability to soil properties and plant growth, an experiment was carried out in a semi-hydroponic system in which part of the roots developed in a nutrient solution (without Fe) and part in the soil (the only source of Fe). Forty-five days after seeding, we quantified shoot dry matter and leaf Fe concentration and content. Fed levels were high, from 5 to 132 g kg-1, and Feo and Fe-CC levels were low, indicating the predominance of Fe as crystalline oxyhydroxides and a low content of Fe readily available to plants. The extraction solutions showed significant correlations with various soil properties, many common to both, indicating that they act similarly. The correlation between the Mehlich-1 and Mehlich-3 extraction solutions was highly significant. However, these two extraction methods were inefficient in predicting Fe availability to plants. There was a positive correlation between dry matter and Fe levels in plant shoots, even within the ranges considered adequate in the soil and in the plant. Dry matter production and leaf Fe concentration and content were positively correlated with Fep concentration, indicating that the Fe fraction related to soil organic matter most contributes to Fe availability to plants.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832016000100543
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832016000100543
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/18069657rbcs20150174
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.40 2016
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126521264308224