Ultramafic soils and nickel phytomining opportunities: A review
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ciência do Solo (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100408 |
Resumo: | ABSTRACT Ultramafic soils are originated from ultramafic rocks such as peridotite and serpentinite and are highly enriched in metals (e.g., Ni, Cr, and Co) and depleted in plant nutrients (e.g., P, K, and Ca). Such characteristics make these soils unfavorable for agriculture and have raised environmental concerns on metal release to the environment. From another perspective, ultramafic soils host a diverse flora with higher endemism than surrounding non-ultramafic areas, which has provided scientists with an opportunity to investigate the evolutionary genetics of plant adaptation. Some plant species adapted to these stressful edaphic conditions developing the ability to accumulate uncommonly high metal concentrations in the harvestable biomass. Such species, called metal hyperaccumulators, can extract metals from ultramafic soils, especially Ni, in a circular economy approach in which the metal-rich biomass is incinerated to generate valuable bio-ores. Phytomining promises to turn ultramafic soils and low-grade ore bodies into economically viable alternatives to metal extraction. Here, we review the current knowledge on ultramafic soils and the most promising hyperaccumulators used to exploit them in temperate and tropical climates. In the tropics, including Brazil, the search for new hyperaccumulator candidates for phytomining and the knowledge to crop these species is incipient and holds untapped opportunities. Despite the feasibility of the phytomining chain has been proven, large-scale demonstrations of profitability are needed to establish the technology. |
id |
SBCS-1_4b89256f7fe9f51d8c6165516e613d87 |
---|---|
oai_identifier_str |
oai:scielo:S0100-06832022000100408 |
network_acronym_str |
SBCS-1 |
network_name_str |
Revista Brasileira de Ciência do Solo (Online) |
repository_id_str |
|
spelling |
Ultramafic soils and nickel phytomining opportunities: A reviewphytoextractionserpentine soilssoil fractionationtrace elementsABSTRACT Ultramafic soils are originated from ultramafic rocks such as peridotite and serpentinite and are highly enriched in metals (e.g., Ni, Cr, and Co) and depleted in plant nutrients (e.g., P, K, and Ca). Such characteristics make these soils unfavorable for agriculture and have raised environmental concerns on metal release to the environment. From another perspective, ultramafic soils host a diverse flora with higher endemism than surrounding non-ultramafic areas, which has provided scientists with an opportunity to investigate the evolutionary genetics of plant adaptation. Some plant species adapted to these stressful edaphic conditions developing the ability to accumulate uncommonly high metal concentrations in the harvestable biomass. Such species, called metal hyperaccumulators, can extract metals from ultramafic soils, especially Ni, in a circular economy approach in which the metal-rich biomass is incinerated to generate valuable bio-ores. Phytomining promises to turn ultramafic soils and low-grade ore bodies into economically viable alternatives to metal extraction. Here, we review the current knowledge on ultramafic soils and the most promising hyperaccumulators used to exploit them in temperate and tropical climates. In the tropics, including Brazil, the search for new hyperaccumulator candidates for phytomining and the knowledge to crop these species is incipient and holds untapped opportunities. Despite the feasibility of the phytomining chain has been proven, large-scale demonstrations of profitability are needed to establish the technology.Sociedade Brasileira de Ciência do Solo2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100408Revista Brasileira de Ciência do Solo v.46 2022reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.36783/18069657rbcs20210099info:eu-repo/semantics/openAccessNascimento,Clístenes Williams Araújo doLima,Luiz Henrique VieiraSilva,Ygor Jacques Agra Bezerra daBiondi,Caroline Mirandaeng2022-04-14T00:00:00Zoai:scielo:S0100-06832022000100408Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2022-04-14T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false |
dc.title.none.fl_str_mv |
Ultramafic soils and nickel phytomining opportunities: A review |
title |
Ultramafic soils and nickel phytomining opportunities: A review |
spellingShingle |
Ultramafic soils and nickel phytomining opportunities: A review Nascimento,Clístenes Williams Araújo do phytoextraction serpentine soils soil fractionation trace elements |
title_short |
Ultramafic soils and nickel phytomining opportunities: A review |
title_full |
Ultramafic soils and nickel phytomining opportunities: A review |
title_fullStr |
Ultramafic soils and nickel phytomining opportunities: A review |
title_full_unstemmed |
Ultramafic soils and nickel phytomining opportunities: A review |
title_sort |
Ultramafic soils and nickel phytomining opportunities: A review |
author |
Nascimento,Clístenes Williams Araújo do |
author_facet |
Nascimento,Clístenes Williams Araújo do Lima,Luiz Henrique Vieira Silva,Ygor Jacques Agra Bezerra da Biondi,Caroline Miranda |
author_role |
author |
author2 |
Lima,Luiz Henrique Vieira Silva,Ygor Jacques Agra Bezerra da Biondi,Caroline Miranda |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Nascimento,Clístenes Williams Araújo do Lima,Luiz Henrique Vieira Silva,Ygor Jacques Agra Bezerra da Biondi,Caroline Miranda |
dc.subject.por.fl_str_mv |
phytoextraction serpentine soils soil fractionation trace elements |
topic |
phytoextraction serpentine soils soil fractionation trace elements |
description |
ABSTRACT Ultramafic soils are originated from ultramafic rocks such as peridotite and serpentinite and are highly enriched in metals (e.g., Ni, Cr, and Co) and depleted in plant nutrients (e.g., P, K, and Ca). Such characteristics make these soils unfavorable for agriculture and have raised environmental concerns on metal release to the environment. From another perspective, ultramafic soils host a diverse flora with higher endemism than surrounding non-ultramafic areas, which has provided scientists with an opportunity to investigate the evolutionary genetics of plant adaptation. Some plant species adapted to these stressful edaphic conditions developing the ability to accumulate uncommonly high metal concentrations in the harvestable biomass. Such species, called metal hyperaccumulators, can extract metals from ultramafic soils, especially Ni, in a circular economy approach in which the metal-rich biomass is incinerated to generate valuable bio-ores. Phytomining promises to turn ultramafic soils and low-grade ore bodies into economically viable alternatives to metal extraction. Here, we review the current knowledge on ultramafic soils and the most promising hyperaccumulators used to exploit them in temperate and tropical climates. In the tropics, including Brazil, the search for new hyperaccumulator candidates for phytomining and the knowledge to crop these species is incipient and holds untapped opportunities. Despite the feasibility of the phytomining chain has been proven, large-scale demonstrations of profitability are needed to establish the technology. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100408 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100408 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.36783/18069657rbcs20210099 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
Revista Brasileira de Ciência do Solo v.46 2022 reponame:Revista Brasileira de Ciência do Solo (Online) instname:Sociedade Brasileira de Ciência do Solo (SBCS) instacron:SBCS |
instname_str |
Sociedade Brasileira de Ciência do Solo (SBCS) |
instacron_str |
SBCS |
institution |
SBCS |
reponame_str |
Revista Brasileira de Ciência do Solo (Online) |
collection |
Revista Brasileira de Ciência do Solo (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS) |
repository.mail.fl_str_mv |
||sbcs@ufv.br |
_version_ |
1752126522828783616 |