Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants

Detalhes bibliográficos
Autor(a) principal: Mendonça,Eduardo de Sá
Data de Publicação: 2017
Outros Autores: Lima,Paulo Cesar de, Guimarães,Gabriel Pinto, Moura,Waldenia de Melo, Andrade,Felipe Vaz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100501
Resumo: ABSTRACT Green manures are an alternative for substituting or supplementing mineral nitrogen fertilizers. The aim of this study was to quantify biological N fixation (BNF) and the N contribution derived from BNF (N-BNF) to N levels in leaves of coffee intercropped with legumes grown on four family farms located in the mountainous region of the Atlantic Forest Biome in the state of Minas Gerais, Brazil. The following green manures were evaluated: pinto peanuts (Arachis pintoi), calopo (Calopogonium mucunoides), crotalaria (Crotalaria spectabilis), Brazilian stylo (Stylosanthes guianensis), pigeon pea (Cajanus cajan), lablab beans (Dolichos lablab), and velvet beans (Stizolobium deeringianum), and spontaneous plants. The experimental design was randomized blocks with a 4 × 8 factorial arrangement (four agricultural properties and eight green manures), and four replications. One hundred grams of fresh matter of each green manure plant were dried in an oven to obtain the dry matter. We then performed chemical and biochemical characterizations and determined the levels of 15N and 14N, which were used to quantify BNF through the 15N (δ15N) natural abundance technique. The legumes C. mucunoides, S. guianensis, C. cajan, and D. lablab had the highest rates of BNF, at 46.1, 45.9, 44.4, and 42.9 %, respectively. C. cajan was the legume that contributed the largest amount of N (44.42 kg ha-1) via BNF.C. cajan, C. spectabilis, and C. mucunoides transferred 55.8, 48.8, and 48.1 %, respectively, of the N from biological fixation to the coffee plants. The use of legumes intercropped with coffee plants is important in supplying N, as well as in transferring N derived from BNF to nutrition of the coffee plants.
id SBCS-1_8abc3c9ec9fbe4272c43fb339599eabe
oai_identifier_str oai:scielo:S0100-06832017000100501
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plantsfamily farminggreen manurecoffee growing15NABSTRACT Green manures are an alternative for substituting or supplementing mineral nitrogen fertilizers. The aim of this study was to quantify biological N fixation (BNF) and the N contribution derived from BNF (N-BNF) to N levels in leaves of coffee intercropped with legumes grown on four family farms located in the mountainous region of the Atlantic Forest Biome in the state of Minas Gerais, Brazil. The following green manures were evaluated: pinto peanuts (Arachis pintoi), calopo (Calopogonium mucunoides), crotalaria (Crotalaria spectabilis), Brazilian stylo (Stylosanthes guianensis), pigeon pea (Cajanus cajan), lablab beans (Dolichos lablab), and velvet beans (Stizolobium deeringianum), and spontaneous plants. The experimental design was randomized blocks with a 4 × 8 factorial arrangement (four agricultural properties and eight green manures), and four replications. One hundred grams of fresh matter of each green manure plant were dried in an oven to obtain the dry matter. We then performed chemical and biochemical characterizations and determined the levels of 15N and 14N, which were used to quantify BNF through the 15N (δ15N) natural abundance technique. The legumes C. mucunoides, S. guianensis, C. cajan, and D. lablab had the highest rates of BNF, at 46.1, 45.9, 44.4, and 42.9 %, respectively. C. cajan was the legume that contributed the largest amount of N (44.42 kg ha-1) via BNF.C. cajan, C. spectabilis, and C. mucunoides transferred 55.8, 48.8, and 48.1 %, respectively, of the N from biological fixation to the coffee plants. The use of legumes intercropped with coffee plants is important in supplying N, as well as in transferring N derived from BNF to nutrition of the coffee plants.Sociedade Brasileira de Ciência do Solo2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100501Revista Brasileira de Ciência do Solo v.41 2017reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/18069657rbcs20160178info:eu-repo/semantics/openAccessMendonça,Eduardo de SáLima,Paulo Cesar deGuimarães,Gabriel PintoMoura,Waldenia de MeloAndrade,Felipe Vazeng2017-01-13T00:00:00Zoai:scielo:S0100-06832017000100501Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2017-01-13T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants
title Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants
spellingShingle Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants
Mendonça,Eduardo de Sá
family farming
green manure
coffee growing
15N
title_short Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants
title_full Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants
title_fullStr Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants
title_full_unstemmed Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants
title_sort Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants
author Mendonça,Eduardo de Sá
author_facet Mendonça,Eduardo de Sá
Lima,Paulo Cesar de
Guimarães,Gabriel Pinto
Moura,Waldenia de Melo
Andrade,Felipe Vaz
author_role author
author2 Lima,Paulo Cesar de
Guimarães,Gabriel Pinto
Moura,Waldenia de Melo
Andrade,Felipe Vaz
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Mendonça,Eduardo de Sá
Lima,Paulo Cesar de
Guimarães,Gabriel Pinto
Moura,Waldenia de Melo
Andrade,Felipe Vaz
dc.subject.por.fl_str_mv family farming
green manure
coffee growing
15N
topic family farming
green manure
coffee growing
15N
description ABSTRACT Green manures are an alternative for substituting or supplementing mineral nitrogen fertilizers. The aim of this study was to quantify biological N fixation (BNF) and the N contribution derived from BNF (N-BNF) to N levels in leaves of coffee intercropped with legumes grown on four family farms located in the mountainous region of the Atlantic Forest Biome in the state of Minas Gerais, Brazil. The following green manures were evaluated: pinto peanuts (Arachis pintoi), calopo (Calopogonium mucunoides), crotalaria (Crotalaria spectabilis), Brazilian stylo (Stylosanthes guianensis), pigeon pea (Cajanus cajan), lablab beans (Dolichos lablab), and velvet beans (Stizolobium deeringianum), and spontaneous plants. The experimental design was randomized blocks with a 4 × 8 factorial arrangement (four agricultural properties and eight green manures), and four replications. One hundred grams of fresh matter of each green manure plant were dried in an oven to obtain the dry matter. We then performed chemical and biochemical characterizations and determined the levels of 15N and 14N, which were used to quantify BNF through the 15N (δ15N) natural abundance technique. The legumes C. mucunoides, S. guianensis, C. cajan, and D. lablab had the highest rates of BNF, at 46.1, 45.9, 44.4, and 42.9 %, respectively. C. cajan was the legume that contributed the largest amount of N (44.42 kg ha-1) via BNF.C. cajan, C. spectabilis, and C. mucunoides transferred 55.8, 48.8, and 48.1 %, respectively, of the N from biological fixation to the coffee plants. The use of legumes intercropped with coffee plants is important in supplying N, as well as in transferring N derived from BNF to nutrition of the coffee plants.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100501
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100501
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/18069657rbcs20160178
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.41 2017
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126521383845888