Digital soil mapping: strategy for data pre-processing

Detalhes bibliográficos
Autor(a) principal: Caten,Alexandre ten
Data de Publicação: 2012
Outros Autores: Dalmolin,Ricardo Simão Diniz, Ruiz,Luis Fernando Chimelo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832012000400003
Resumo: The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.
id SBCS-1_90f289a1edf2f189ec28909b87e549bb
oai_identifier_str oai:scielo:S0100-06832012000400003
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Digital soil mapping: strategy for data pre-processingchoropleth mappedometricssoil surveydecision treeThe region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.Sociedade Brasileira de Ciência do Solo2012-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832012000400003Revista Brasileira de Ciência do Solo v.36 n.4 2012reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/S0100-06832012000400003info:eu-repo/semantics/openAccessCaten,Alexandre tenDalmolin,Ricardo Simão DinizRuiz,Luis Fernando Chimeloeng2012-10-23T00:00:00Zoai:scielo:S0100-06832012000400003Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2012-10-23T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Digital soil mapping: strategy for data pre-processing
title Digital soil mapping: strategy for data pre-processing
spellingShingle Digital soil mapping: strategy for data pre-processing
Caten,Alexandre ten
choropleth map
pedometrics
soil survey
decision tree
title_short Digital soil mapping: strategy for data pre-processing
title_full Digital soil mapping: strategy for data pre-processing
title_fullStr Digital soil mapping: strategy for data pre-processing
title_full_unstemmed Digital soil mapping: strategy for data pre-processing
title_sort Digital soil mapping: strategy for data pre-processing
author Caten,Alexandre ten
author_facet Caten,Alexandre ten
Dalmolin,Ricardo Simão Diniz
Ruiz,Luis Fernando Chimelo
author_role author
author2 Dalmolin,Ricardo Simão Diniz
Ruiz,Luis Fernando Chimelo
author2_role author
author
dc.contributor.author.fl_str_mv Caten,Alexandre ten
Dalmolin,Ricardo Simão Diniz
Ruiz,Luis Fernando Chimelo
dc.subject.por.fl_str_mv choropleth map
pedometrics
soil survey
decision tree
topic choropleth map
pedometrics
soil survey
decision tree
description The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832012000400003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832012000400003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-06832012000400003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.36 n.4 2012
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126518047277056