Digital soil mapping: strategy for data pre-processing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ciência do Solo (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832012000400003 |
Resumo: | The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance. |
id |
SBCS-1_90f289a1edf2f189ec28909b87e549bb |
---|---|
oai_identifier_str |
oai:scielo:S0100-06832012000400003 |
network_acronym_str |
SBCS-1 |
network_name_str |
Revista Brasileira de Ciência do Solo (Online) |
repository_id_str |
|
spelling |
Digital soil mapping: strategy for data pre-processingchoropleth mappedometricssoil surveydecision treeThe region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.Sociedade Brasileira de Ciência do Solo2012-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832012000400003Revista Brasileira de Ciência do Solo v.36 n.4 2012reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/S0100-06832012000400003info:eu-repo/semantics/openAccessCaten,Alexandre tenDalmolin,Ricardo Simão DinizRuiz,Luis Fernando Chimeloeng2012-10-23T00:00:00Zoai:scielo:S0100-06832012000400003Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2012-10-23T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false |
dc.title.none.fl_str_mv |
Digital soil mapping: strategy for data pre-processing |
title |
Digital soil mapping: strategy for data pre-processing |
spellingShingle |
Digital soil mapping: strategy for data pre-processing Caten,Alexandre ten choropleth map pedometrics soil survey decision tree |
title_short |
Digital soil mapping: strategy for data pre-processing |
title_full |
Digital soil mapping: strategy for data pre-processing |
title_fullStr |
Digital soil mapping: strategy for data pre-processing |
title_full_unstemmed |
Digital soil mapping: strategy for data pre-processing |
title_sort |
Digital soil mapping: strategy for data pre-processing |
author |
Caten,Alexandre ten |
author_facet |
Caten,Alexandre ten Dalmolin,Ricardo Simão Diniz Ruiz,Luis Fernando Chimelo |
author_role |
author |
author2 |
Dalmolin,Ricardo Simão Diniz Ruiz,Luis Fernando Chimelo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Caten,Alexandre ten Dalmolin,Ricardo Simão Diniz Ruiz,Luis Fernando Chimelo |
dc.subject.por.fl_str_mv |
choropleth map pedometrics soil survey decision tree |
topic |
choropleth map pedometrics soil survey decision tree |
description |
The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832012000400003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832012000400003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0100-06832012000400003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
Revista Brasileira de Ciência do Solo v.36 n.4 2012 reponame:Revista Brasileira de Ciência do Solo (Online) instname:Sociedade Brasileira de Ciência do Solo (SBCS) instacron:SBCS |
instname_str |
Sociedade Brasileira de Ciência do Solo (SBCS) |
instacron_str |
SBCS |
institution |
SBCS |
reponame_str |
Revista Brasileira de Ciência do Solo (Online) |
collection |
Revista Brasileira de Ciência do Solo (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS) |
repository.mail.fl_str_mv |
||sbcs@ufv.br |
_version_ |
1752126518047277056 |