Diagnostic techniques applied in geostatistics for agricultural data analysis

Detalhes bibliográficos
Autor(a) principal: Borssoi,Joelmir André
Data de Publicação: 2009
Outros Autores: Uribe-Opazo,Miguel Angel, Galea Rojas,Manuel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000600005
Resumo: The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
id SBCS-1_9c7987afda2188c602eb267009e37837
oai_identifier_str oai:scielo:S0100-06832009000600005
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Diagnostic techniques applied in geostatistics for agricultural data analysislocal influencemaximum likelihoodrestricted maximum likelihoodThe structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.Sociedade Brasileira de Ciência do Solo2009-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000600005Revista Brasileira de Ciência do Solo v.33 n.6 2009reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/S0100-06832009000600005info:eu-repo/semantics/openAccessBorssoi,Joelmir AndréUribe-Opazo,Miguel AngelGalea Rojas,Manueleng2010-02-09T00:00:00Zoai:scielo:S0100-06832009000600005Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2010-02-09T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Diagnostic techniques applied in geostatistics for agricultural data analysis
title Diagnostic techniques applied in geostatistics for agricultural data analysis
spellingShingle Diagnostic techniques applied in geostatistics for agricultural data analysis
Borssoi,Joelmir André
local influence
maximum likelihood
restricted maximum likelihood
title_short Diagnostic techniques applied in geostatistics for agricultural data analysis
title_full Diagnostic techniques applied in geostatistics for agricultural data analysis
title_fullStr Diagnostic techniques applied in geostatistics for agricultural data analysis
title_full_unstemmed Diagnostic techniques applied in geostatistics for agricultural data analysis
title_sort Diagnostic techniques applied in geostatistics for agricultural data analysis
author Borssoi,Joelmir André
author_facet Borssoi,Joelmir André
Uribe-Opazo,Miguel Angel
Galea Rojas,Manuel
author_role author
author2 Uribe-Opazo,Miguel Angel
Galea Rojas,Manuel
author2_role author
author
dc.contributor.author.fl_str_mv Borssoi,Joelmir André
Uribe-Opazo,Miguel Angel
Galea Rojas,Manuel
dc.subject.por.fl_str_mv local influence
maximum likelihood
restricted maximum likelihood
topic local influence
maximum likelihood
restricted maximum likelihood
description The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
publishDate 2009
dc.date.none.fl_str_mv 2009-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000600005
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000600005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-06832009000600005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.33 n.6 2009
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126515614580736