Diagnostic techniques applied in geostatistics for agricultural data analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ciência do Solo (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000600005 |
Resumo: | The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps. |
id |
SBCS-1_9c7987afda2188c602eb267009e37837 |
---|---|
oai_identifier_str |
oai:scielo:S0100-06832009000600005 |
network_acronym_str |
SBCS-1 |
network_name_str |
Revista Brasileira de Ciência do Solo (Online) |
repository_id_str |
|
spelling |
Diagnostic techniques applied in geostatistics for agricultural data analysislocal influencemaximum likelihoodrestricted maximum likelihoodThe structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.Sociedade Brasileira de Ciência do Solo2009-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000600005Revista Brasileira de Ciência do Solo v.33 n.6 2009reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/S0100-06832009000600005info:eu-repo/semantics/openAccessBorssoi,Joelmir AndréUribe-Opazo,Miguel AngelGalea Rojas,Manueleng2010-02-09T00:00:00Zoai:scielo:S0100-06832009000600005Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2010-02-09T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false |
dc.title.none.fl_str_mv |
Diagnostic techniques applied in geostatistics for agricultural data analysis |
title |
Diagnostic techniques applied in geostatistics for agricultural data analysis |
spellingShingle |
Diagnostic techniques applied in geostatistics for agricultural data analysis Borssoi,Joelmir André local influence maximum likelihood restricted maximum likelihood |
title_short |
Diagnostic techniques applied in geostatistics for agricultural data analysis |
title_full |
Diagnostic techniques applied in geostatistics for agricultural data analysis |
title_fullStr |
Diagnostic techniques applied in geostatistics for agricultural data analysis |
title_full_unstemmed |
Diagnostic techniques applied in geostatistics for agricultural data analysis |
title_sort |
Diagnostic techniques applied in geostatistics for agricultural data analysis |
author |
Borssoi,Joelmir André |
author_facet |
Borssoi,Joelmir André Uribe-Opazo,Miguel Angel Galea Rojas,Manuel |
author_role |
author |
author2 |
Uribe-Opazo,Miguel Angel Galea Rojas,Manuel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Borssoi,Joelmir André Uribe-Opazo,Miguel Angel Galea Rojas,Manuel |
dc.subject.por.fl_str_mv |
local influence maximum likelihood restricted maximum likelihood |
topic |
local influence maximum likelihood restricted maximum likelihood |
description |
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000600005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832009000600005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0100-06832009000600005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
Revista Brasileira de Ciência do Solo v.33 n.6 2009 reponame:Revista Brasileira de Ciência do Solo (Online) instname:Sociedade Brasileira de Ciência do Solo (SBCS) instacron:SBCS |
instname_str |
Sociedade Brasileira de Ciência do Solo (SBCS) |
instacron_str |
SBCS |
institution |
SBCS |
reponame_str |
Revista Brasileira de Ciência do Solo (Online) |
collection |
Revista Brasileira de Ciência do Solo (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS) |
repository.mail.fl_str_mv |
||sbcs@ufv.br |
_version_ |
1752126515614580736 |