Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ciência do Solo (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100427 |
Resumo: | Abstract The preferred option for disposal of short-lived low and intermediate level radioactive wastes is a near surface disposal facility in which soil is one of the barriers that avoid radionuclide migration outside the controlled area. For construction of that kind of facility, concrete is widely used, and its interaction with water induces its degradation, resulting in a high pH solution. The alkaline solution may affect the near-field environment of radioactive waste repositories, including the soil, promoting mineralogical alterations that result in significant changes in key properties of materials, compromising their performance as safety components. In this study, a sample of a Brazilian Typic Rhodudult soil, previously investigated concerning its performance for Cs sorption, was subjected to interaction with the alkaline solution for 24 h and for 7, 14, and 28 days in order to evaluate the impact on its chemical, mineralogical, and sorption properties. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM), and electron microprobe analysis were performed before and after each alteration period. Results indicated dissolution of minerals, such as kaolinite and quartz, associated with incorporation of K and Ca from the alkaline solution, likely resulting in the formation of hydrated calcium silicate phases (CSH), which are expected to be worse sorbents for alkaline elements (e.g., Cs) than the original minerals. The Kd values for Cs in the altered samples also decreased according to the alteration period, demonstrating that alkaline interaction effectively modifies the soil sorption properties for Cs. |
id |
SBCS-1_a3d093da95b36fde6a9b582fb5619099 |
---|---|
oai_identifier_str |
oai:scielo:S0100-06832017000100427 |
network_acronym_str |
SBCS-1 |
network_name_str |
Revista Brasileira de Ciência do Solo (Online) |
repository_id_str |
|
spelling |
Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soilrepositoryalkaline alterationCs sorptionCSH phasesAbstract The preferred option for disposal of short-lived low and intermediate level radioactive wastes is a near surface disposal facility in which soil is one of the barriers that avoid radionuclide migration outside the controlled area. For construction of that kind of facility, concrete is widely used, and its interaction with water induces its degradation, resulting in a high pH solution. The alkaline solution may affect the near-field environment of radioactive waste repositories, including the soil, promoting mineralogical alterations that result in significant changes in key properties of materials, compromising their performance as safety components. In this study, a sample of a Brazilian Typic Rhodudult soil, previously investigated concerning its performance for Cs sorption, was subjected to interaction with the alkaline solution for 24 h and for 7, 14, and 28 days in order to evaluate the impact on its chemical, mineralogical, and sorption properties. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM), and electron microprobe analysis were performed before and after each alteration period. Results indicated dissolution of minerals, such as kaolinite and quartz, associated with incorporation of K and Ca from the alkaline solution, likely resulting in the formation of hydrated calcium silicate phases (CSH), which are expected to be worse sorbents for alkaline elements (e.g., Cs) than the original minerals. The Kd values for Cs in the altered samples also decreased according to the alteration period, demonstrating that alkaline interaction effectively modifies the soil sorption properties for Cs.Sociedade Brasileira de Ciência do Solo2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100427Revista Brasileira de Ciência do Solo v.41 2017reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/18069657rbcs20170001info:eu-repo/semantics/openAccessCalábria,Jaqueline Alves de AlmeidaCota,Stela Dalva SantosLadeira,Ana Cláudia Queirozeng2017-11-07T00:00:00Zoai:scielo:S0100-06832017000100427Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2017-11-07T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false |
dc.title.none.fl_str_mv |
Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil |
title |
Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil |
spellingShingle |
Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil Calábria,Jaqueline Alves de Almeida repository alkaline alteration Cs sorption CSH phases |
title_short |
Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil |
title_full |
Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil |
title_fullStr |
Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil |
title_full_unstemmed |
Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil |
title_sort |
Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil |
author |
Calábria,Jaqueline Alves de Almeida |
author_facet |
Calábria,Jaqueline Alves de Almeida Cota,Stela Dalva Santos Ladeira,Ana Cláudia Queiroz |
author_role |
author |
author2 |
Cota,Stela Dalva Santos Ladeira,Ana Cláudia Queiroz |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Calábria,Jaqueline Alves de Almeida Cota,Stela Dalva Santos Ladeira,Ana Cláudia Queiroz |
dc.subject.por.fl_str_mv |
repository alkaline alteration Cs sorption CSH phases |
topic |
repository alkaline alteration Cs sorption CSH phases |
description |
Abstract The preferred option for disposal of short-lived low and intermediate level radioactive wastes is a near surface disposal facility in which soil is one of the barriers that avoid radionuclide migration outside the controlled area. For construction of that kind of facility, concrete is widely used, and its interaction with water induces its degradation, resulting in a high pH solution. The alkaline solution may affect the near-field environment of radioactive waste repositories, including the soil, promoting mineralogical alterations that result in significant changes in key properties of materials, compromising their performance as safety components. In this study, a sample of a Brazilian Typic Rhodudult soil, previously investigated concerning its performance for Cs sorption, was subjected to interaction with the alkaline solution for 24 h and for 7, 14, and 28 days in order to evaluate the impact on its chemical, mineralogical, and sorption properties. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM), and electron microprobe analysis were performed before and after each alteration period. Results indicated dissolution of minerals, such as kaolinite and quartz, associated with incorporation of K and Ca from the alkaline solution, likely resulting in the formation of hydrated calcium silicate phases (CSH), which are expected to be worse sorbents for alkaline elements (e.g., Cs) than the original minerals. The Kd values for Cs in the altered samples also decreased according to the alteration period, demonstrating that alkaline interaction effectively modifies the soil sorption properties for Cs. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100427 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100427 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/18069657rbcs20170001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
Revista Brasileira de Ciência do Solo v.41 2017 reponame:Revista Brasileira de Ciência do Solo (Online) instname:Sociedade Brasileira de Ciência do Solo (SBCS) instacron:SBCS |
instname_str |
Sociedade Brasileira de Ciência do Solo (SBCS) |
instacron_str |
SBCS |
institution |
SBCS |
reponame_str |
Revista Brasileira de Ciência do Solo (Online) |
collection |
Revista Brasileira de Ciência do Solo (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS) |
repository.mail.fl_str_mv |
||sbcs@ufv.br |
_version_ |
1752126521372311552 |