Lead and zinc in the structure of organic and mineral soil components

Detalhes bibliográficos
Autor(a) principal: Kummer,Larissa
Data de Publicação: 2013
Outros Autores: Melo,Vander de Freitas, Barros,Yara Jurema
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832013000200015
Resumo: In addition to the more reactive forms, metals can occur in the structure of minerals, and the sum of all these forms defines their total contents in different soil fractions. The isomorphic substitution of heavy metals for example alters the dimensions of the unit cell and mineral size. This study proposed a method of chemical fractionation of heavy metals, using more powerful extraction methods, to remove the organic and different mineral phases completely. Soil samples were taken from eight soil profiles (0-10, 10-20 and 20-40 cm) in a Pb mining and metallurgy area in Adrianópolis, Paraná, Brazil. The Pb and Zn concentrations were determined in the following fractions (complete phase removal in each sequential extraction): exchangeable; carbonates; organic matter; amorphous and crystalline Fe oxides; Al oxide, amorphous aluminosilicates and kaolinite; and residual fractions. The complete removal of organic matter and mineral phases in sequential extractions resulted in low participation of residual forms of Pb and Zn in the total concentrations of these metals in the soils: there was lower association of metals with primary and 2:1 minerals and refractory oxides. The powerful methods used here allow an identification of the complete metal-mineral associations, such as the occurrence of Pb and Zn in the structure of the minerals. The higher incidence of Zn than Pb in the structure of Fe oxides, due to isomorphic substitution, was attributed to a smaller difference between the ionic radius of Zn2+ and Fe3+.
id SBCS-1_a626f2ec11c8c441a7d462939c43335e
oai_identifier_str oai:scielo:S0100-06832013000200015
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Lead and zinc in the structure of organic and mineral soil componentsisomorphic substitutionsequential analysisiron oxidekaoliniteIn addition to the more reactive forms, metals can occur in the structure of minerals, and the sum of all these forms defines their total contents in different soil fractions. The isomorphic substitution of heavy metals for example alters the dimensions of the unit cell and mineral size. This study proposed a method of chemical fractionation of heavy metals, using more powerful extraction methods, to remove the organic and different mineral phases completely. Soil samples were taken from eight soil profiles (0-10, 10-20 and 20-40 cm) in a Pb mining and metallurgy area in Adrianópolis, Paraná, Brazil. The Pb and Zn concentrations were determined in the following fractions (complete phase removal in each sequential extraction): exchangeable; carbonates; organic matter; amorphous and crystalline Fe oxides; Al oxide, amorphous aluminosilicates and kaolinite; and residual fractions. The complete removal of organic matter and mineral phases in sequential extractions resulted in low participation of residual forms of Pb and Zn in the total concentrations of these metals in the soils: there was lower association of metals with primary and 2:1 minerals and refractory oxides. The powerful methods used here allow an identification of the complete metal-mineral associations, such as the occurrence of Pb and Zn in the structure of the minerals. The higher incidence of Zn than Pb in the structure of Fe oxides, due to isomorphic substitution, was attributed to a smaller difference between the ionic radius of Zn2+ and Fe3+.Sociedade Brasileira de Ciência do Solo2013-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832013000200015Revista Brasileira de Ciência do Solo v.37 n.2 2013reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/S0100-06832013000200015info:eu-repo/semantics/openAccessKummer,LarissaMelo,Vander de FreitasBarros,Yara Juremaeng2013-06-03T00:00:00Zoai:scielo:S0100-06832013000200015Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2013-06-03T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Lead and zinc in the structure of organic and mineral soil components
title Lead and zinc in the structure of organic and mineral soil components
spellingShingle Lead and zinc in the structure of organic and mineral soil components
Kummer,Larissa
isomorphic substitution
sequential analysis
iron oxide
kaolinite
title_short Lead and zinc in the structure of organic and mineral soil components
title_full Lead and zinc in the structure of organic and mineral soil components
title_fullStr Lead and zinc in the structure of organic and mineral soil components
title_full_unstemmed Lead and zinc in the structure of organic and mineral soil components
title_sort Lead and zinc in the structure of organic and mineral soil components
author Kummer,Larissa
author_facet Kummer,Larissa
Melo,Vander de Freitas
Barros,Yara Jurema
author_role author
author2 Melo,Vander de Freitas
Barros,Yara Jurema
author2_role author
author
dc.contributor.author.fl_str_mv Kummer,Larissa
Melo,Vander de Freitas
Barros,Yara Jurema
dc.subject.por.fl_str_mv isomorphic substitution
sequential analysis
iron oxide
kaolinite
topic isomorphic substitution
sequential analysis
iron oxide
kaolinite
description In addition to the more reactive forms, metals can occur in the structure of minerals, and the sum of all these forms defines their total contents in different soil fractions. The isomorphic substitution of heavy metals for example alters the dimensions of the unit cell and mineral size. This study proposed a method of chemical fractionation of heavy metals, using more powerful extraction methods, to remove the organic and different mineral phases completely. Soil samples were taken from eight soil profiles (0-10, 10-20 and 20-40 cm) in a Pb mining and metallurgy area in Adrianópolis, Paraná, Brazil. The Pb and Zn concentrations were determined in the following fractions (complete phase removal in each sequential extraction): exchangeable; carbonates; organic matter; amorphous and crystalline Fe oxides; Al oxide, amorphous aluminosilicates and kaolinite; and residual fractions. The complete removal of organic matter and mineral phases in sequential extractions resulted in low participation of residual forms of Pb and Zn in the total concentrations of these metals in the soils: there was lower association of metals with primary and 2:1 minerals and refractory oxides. The powerful methods used here allow an identification of the complete metal-mineral associations, such as the occurrence of Pb and Zn in the structure of the minerals. The higher incidence of Zn than Pb in the structure of Fe oxides, due to isomorphic substitution, was attributed to a smaller difference between the ionic radius of Zn2+ and Fe3+.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832013000200015
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832013000200015
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-06832013000200015
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.37 n.2 2013
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126518548496384