Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ciência do Solo (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832018000100315 |
Resumo: | ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units. |
id |
SBCS-1_abb0a52307588fbcc5c592f733700350 |
---|---|
oai_identifier_str |
oai:scielo:S0100-06832018000100315 |
network_acronym_str |
SBCS-1 |
network_name_str |
Revista Brasileira de Ciência do Solo (Online) |
repository_id_str |
|
spelling |
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mappingdata mininggeomorphometric variablessoil predictionABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units.Sociedade Brasileira de Ciência do Solo2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832018000100315Revista Brasileira de Ciência do Solo v.42 2018reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/18069657rbcs20170414info:eu-repo/semantics/openAccessCampos,Alcinei RibeiroGiasson,ElvioCosta,José Janderson FerreiraMachado,Israel RosaSilva,Elisângela Benedet daBonfatti,Benito Robertoeng2018-12-20T00:00:00Zoai:scielo:S0100-06832018000100315Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2018-12-20T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false |
dc.title.none.fl_str_mv |
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping |
title |
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping |
spellingShingle |
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping Campos,Alcinei Ribeiro data mining geomorphometric variables soil prediction |
title_short |
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping |
title_full |
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping |
title_fullStr |
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping |
title_full_unstemmed |
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping |
title_sort |
Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping |
author |
Campos,Alcinei Ribeiro |
author_facet |
Campos,Alcinei Ribeiro Giasson,Elvio Costa,José Janderson Ferreira Machado,Israel Rosa Silva,Elisângela Benedet da Bonfatti,Benito Roberto |
author_role |
author |
author2 |
Giasson,Elvio Costa,José Janderson Ferreira Machado,Israel Rosa Silva,Elisângela Benedet da Bonfatti,Benito Roberto |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Campos,Alcinei Ribeiro Giasson,Elvio Costa,José Janderson Ferreira Machado,Israel Rosa Silva,Elisângela Benedet da Bonfatti,Benito Roberto |
dc.subject.por.fl_str_mv |
data mining geomorphometric variables soil prediction |
topic |
data mining geomorphometric variables soil prediction |
description |
ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832018000100315 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832018000100315 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/18069657rbcs20170414 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
Revista Brasileira de Ciência do Solo v.42 2018 reponame:Revista Brasileira de Ciência do Solo (Online) instname:Sociedade Brasileira de Ciência do Solo (SBCS) instacron:SBCS |
instname_str |
Sociedade Brasileira de Ciência do Solo (SBCS) |
instacron_str |
SBCS |
institution |
SBCS |
reponame_str |
Revista Brasileira de Ciência do Solo (Online) |
collection |
Revista Brasileira de Ciência do Solo (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS) |
repository.mail.fl_str_mv |
||sbcs@ufv.br |
_version_ |
1752126521755041792 |