Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping

Detalhes bibliográficos
Autor(a) principal: Campos,Alcinei Ribeiro
Data de Publicação: 2018
Outros Autores: Giasson,Elvio, Costa,José Janderson Ferreira, Machado,Israel Rosa, Silva,Elisângela Benedet da, Bonfatti,Benito Roberto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832018000100315
Resumo: ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units.
id SBCS-1_abb0a52307588fbcc5c592f733700350
oai_identifier_str oai:scielo:S0100-06832018000100315
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mappingdata mininggeomorphometric variablessoil predictionABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units.Sociedade Brasileira de Ciência do Solo2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832018000100315Revista Brasileira de Ciência do Solo v.42 2018reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/18069657rbcs20170414info:eu-repo/semantics/openAccessCampos,Alcinei RibeiroGiasson,ElvioCosta,José Janderson FerreiraMachado,Israel RosaSilva,Elisângela Benedet daBonfatti,Benito Robertoeng2018-12-20T00:00:00Zoai:scielo:S0100-06832018000100315Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2018-12-20T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
title Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
spellingShingle Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
Campos,Alcinei Ribeiro
data mining
geomorphometric variables
soil prediction
title_short Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
title_full Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
title_fullStr Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
title_full_unstemmed Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
title_sort Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
author Campos,Alcinei Ribeiro
author_facet Campos,Alcinei Ribeiro
Giasson,Elvio
Costa,José Janderson Ferreira
Machado,Israel Rosa
Silva,Elisângela Benedet da
Bonfatti,Benito Roberto
author_role author
author2 Giasson,Elvio
Costa,José Janderson Ferreira
Machado,Israel Rosa
Silva,Elisângela Benedet da
Bonfatti,Benito Roberto
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Campos,Alcinei Ribeiro
Giasson,Elvio
Costa,José Janderson Ferreira
Machado,Israel Rosa
Silva,Elisângela Benedet da
Bonfatti,Benito Roberto
dc.subject.por.fl_str_mv data mining
geomorphometric variables
soil prediction
topic data mining
geomorphometric variables
soil prediction
description ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832018000100315
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832018000100315
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/18069657rbcs20170414
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.42 2018
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126521755041792