Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systems

Detalhes bibliográficos
Autor(a) principal: Prata,Fábio
Data de Publicação: 2005
Outros Autores: Lavorenti,Arquimedes, Regitano,Jussara Borges, Vereecken,Harry, Tornisielo,Valdemar Luiz, Pelissari,Adelino
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832005000100007
Resumo: The behavior of glyphosate in a Rhodic Oxisol, collected from fields under no-till and conventional management systems in Ponta Grossa, Parana state (Brazil) was investigated. Both agricultural systems had been in production for 23 years. Glyphosate mineralization, soil-bound forms, sorption and desorption kinetics, sorption/desorption batch experiments, and soil glyphosate phythoavailability (to Panicum maximum) were determined. The mineralization experiment was set up in a completely randomized design with a 2 x 2 factorial scheme (two management systems and two 14C radiolabelled positions in the glyphosate), with five replicates. 14CO2 evolution was measured in 7-day intervals during 63 days. The glyphosate sorption kinetics was investigated in a batch experiment, employing a glyphosate concentration of 0.84 mg L-1. The equilibration solution was 0.01 mol L-1 CaCl2 and the equilibration times were 0, 10, 30, 60, 120, 240, and 360 min. Sorption/desorption of glyphosate was also investigated using equilibrium batch experiments. Five different concentrations of the herbicide were used for sorption (0.42, 0.84, 1.68, 3.36, and 6.72 mg L-1) and one concentration for desorption. Glyphosate phytoavailability was analyzed in a 2 x 5 factorial scheme with two management systems and five glyphosate concentrations added to soil (0, 4.2, 8.4, 42.0, and 210.0 µg g-1) in a completely randomized design. Phytotoxicity symptoms in P. maximum were evaluated for different periods. The soil under both management systems showed high glyphosate sorption, which impeded its desorption and impaired the mineralization in the soil solution. Practically the total amount of the applied glyphosate was quickly sorbed (over 90 % sorbed within 10 min). Glyphosate bound to residues did not have adverse effects on P. maximum growth. The mineralization of glyphosate was faster under no-till and aminomethylphosphonic acid was the main glyphosate metabolite.
id SBCS-1_d1f153bbcb09b4c5ba08662e91c5c1f3
oai_identifier_str oai:scielo:S0100-06832005000100007
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systemsherbicidesorptiondegradationmineralizationphytotoxicityPanicum maximumThe behavior of glyphosate in a Rhodic Oxisol, collected from fields under no-till and conventional management systems in Ponta Grossa, Parana state (Brazil) was investigated. Both agricultural systems had been in production for 23 years. Glyphosate mineralization, soil-bound forms, sorption and desorption kinetics, sorption/desorption batch experiments, and soil glyphosate phythoavailability (to Panicum maximum) were determined. The mineralization experiment was set up in a completely randomized design with a 2 x 2 factorial scheme (two management systems and two 14C radiolabelled positions in the glyphosate), with five replicates. 14CO2 evolution was measured in 7-day intervals during 63 days. The glyphosate sorption kinetics was investigated in a batch experiment, employing a glyphosate concentration of 0.84 mg L-1. The equilibration solution was 0.01 mol L-1 CaCl2 and the equilibration times were 0, 10, 30, 60, 120, 240, and 360 min. Sorption/desorption of glyphosate was also investigated using equilibrium batch experiments. Five different concentrations of the herbicide were used for sorption (0.42, 0.84, 1.68, 3.36, and 6.72 mg L-1) and one concentration for desorption. Glyphosate phytoavailability was analyzed in a 2 x 5 factorial scheme with two management systems and five glyphosate concentrations added to soil (0, 4.2, 8.4, 42.0, and 210.0 µg g-1) in a completely randomized design. Phytotoxicity symptoms in P. maximum were evaluated for different periods. The soil under both management systems showed high glyphosate sorption, which impeded its desorption and impaired the mineralization in the soil solution. Practically the total amount of the applied glyphosate was quickly sorbed (over 90 % sorbed within 10 min). Glyphosate bound to residues did not have adverse effects on P. maximum growth. The mineralization of glyphosate was faster under no-till and aminomethylphosphonic acid was the main glyphosate metabolite.Sociedade Brasileira de Ciência do Solo2005-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832005000100007Revista Brasileira de Ciência do Solo v.29 n.1 2005reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/S0100-06832005000100007info:eu-repo/semantics/openAccessPrata,FábioLavorenti,ArquimedesRegitano,Jussara BorgesVereecken,HarryTornisielo,Valdemar LuizPelissari,Adelinoeng2005-04-18T00:00:00Zoai:scielo:S0100-06832005000100007Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2005-04-18T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systems
title Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systems
spellingShingle Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systems
Prata,Fábio
herbicide
sorption
degradation
mineralization
phytotoxicity
Panicum maximum
title_short Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systems
title_full Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systems
title_fullStr Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systems
title_full_unstemmed Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systems
title_sort Glyphosate behavior in a Rhodic Oxisol under no-till and conventional agricultural systems
author Prata,Fábio
author_facet Prata,Fábio
Lavorenti,Arquimedes
Regitano,Jussara Borges
Vereecken,Harry
Tornisielo,Valdemar Luiz
Pelissari,Adelino
author_role author
author2 Lavorenti,Arquimedes
Regitano,Jussara Borges
Vereecken,Harry
Tornisielo,Valdemar Luiz
Pelissari,Adelino
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Prata,Fábio
Lavorenti,Arquimedes
Regitano,Jussara Borges
Vereecken,Harry
Tornisielo,Valdemar Luiz
Pelissari,Adelino
dc.subject.por.fl_str_mv herbicide
sorption
degradation
mineralization
phytotoxicity
Panicum maximum
topic herbicide
sorption
degradation
mineralization
phytotoxicity
Panicum maximum
description The behavior of glyphosate in a Rhodic Oxisol, collected from fields under no-till and conventional management systems in Ponta Grossa, Parana state (Brazil) was investigated. Both agricultural systems had been in production for 23 years. Glyphosate mineralization, soil-bound forms, sorption and desorption kinetics, sorption/desorption batch experiments, and soil glyphosate phythoavailability (to Panicum maximum) were determined. The mineralization experiment was set up in a completely randomized design with a 2 x 2 factorial scheme (two management systems and two 14C radiolabelled positions in the glyphosate), with five replicates. 14CO2 evolution was measured in 7-day intervals during 63 days. The glyphosate sorption kinetics was investigated in a batch experiment, employing a glyphosate concentration of 0.84 mg L-1. The equilibration solution was 0.01 mol L-1 CaCl2 and the equilibration times were 0, 10, 30, 60, 120, 240, and 360 min. Sorption/desorption of glyphosate was also investigated using equilibrium batch experiments. Five different concentrations of the herbicide were used for sorption (0.42, 0.84, 1.68, 3.36, and 6.72 mg L-1) and one concentration for desorption. Glyphosate phytoavailability was analyzed in a 2 x 5 factorial scheme with two management systems and five glyphosate concentrations added to soil (0, 4.2, 8.4, 42.0, and 210.0 µg g-1) in a completely randomized design. Phytotoxicity symptoms in P. maximum were evaluated for different periods. The soil under both management systems showed high glyphosate sorption, which impeded its desorption and impaired the mineralization in the soil solution. Practically the total amount of the applied glyphosate was quickly sorbed (over 90 % sorbed within 10 min). Glyphosate bound to residues did not have adverse effects on P. maximum growth. The mineralization of glyphosate was faster under no-till and aminomethylphosphonic acid was the main glyphosate metabolite.
publishDate 2005
dc.date.none.fl_str_mv 2005-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832005000100007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832005000100007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-06832005000100007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.29 n.1 2005
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126511909961728