Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater

Detalhes bibliográficos
Autor(a) principal: Fortes Neto,Paulo
Data de Publicação: 2017
Outros Autores: Fortes,Nara Lúcia Perondi, Silva,Eliana Maria de Araújo Mariano da, Brambatti,Fabiana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100414
Resumo: ABSTRACT Studies on the survival of pathogenic microorganisms in the soil after use of wastewater for fertilization of agricultural crops report the effects of moisture, pH, organic matter, and soil temperature on microorganisms. There are few studies that assess the survival of these microorganisms in the rhizosphere of plants fertilized with wastewater. Thus, the aim of this study was to quantify the number of fecal coliforms and rhizobacteria (fluorescent Pseudomonas spp., Bacillus spp,) in the rhizosphere of winter and summer crops fertilized with wastewater. In the experiment, we used 20 plots, and each plot occupied an area of 200 m2. The treatments used in the winter crop consisted of uncultivated plots and single crops of wheat, triticale, black bean, and intercropped black bean/wheat. In the summer season, we used uncultivated plots and single crops of corn, sunflower, bean, and intercropped bean/corn. The experiment was conducted in a randomized block design with five treatments and four replications. Soil samples from the rhizosphere for microbiological analyses were collected at the flowering stage of the crops at a depth of 0.00-0.20 m. Plants stimulated fluorescent Pseudomonas spp. and Bacillus spp. in the rhizosphere, with average scores of 7.9 and 6.9 log CFU g-1 of dry soil, respectively, whereas in bare soil, these scores were 6.7 and 5.8 log CFU g-1 of dry soil for these rhizobacteria groups. However, this stimulating effect was not seen for fecal coliforms, which had an average score of 31.7 × 103 MPN g-1 of dry soil in the uncultivated area and 20.0 × 103 MPN g-1 of dry soil in crop areas. Overall, the numbers of rhizobacteria colonies in the rhizosphere soil under intercropping were higher than those observed in the rhizosphere soils of single winter and summer crops. Therefore, the presence of plants enhances the development of rhizobacteria and changes the balance among the species of microorganisms in the soil microbial community fertilized with wastewater.
id SBCS-1_d8562f263fb9fcf4e423dd2659e3d088
oai_identifier_str oai:scielo:S0100-06832017000100414
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewaterrhizospherereclaimed waterwastewaterABSTRACT Studies on the survival of pathogenic microorganisms in the soil after use of wastewater for fertilization of agricultural crops report the effects of moisture, pH, organic matter, and soil temperature on microorganisms. There are few studies that assess the survival of these microorganisms in the rhizosphere of plants fertilized with wastewater. Thus, the aim of this study was to quantify the number of fecal coliforms and rhizobacteria (fluorescent Pseudomonas spp., Bacillus spp,) in the rhizosphere of winter and summer crops fertilized with wastewater. In the experiment, we used 20 plots, and each plot occupied an area of 200 m2. The treatments used in the winter crop consisted of uncultivated plots and single crops of wheat, triticale, black bean, and intercropped black bean/wheat. In the summer season, we used uncultivated plots and single crops of corn, sunflower, bean, and intercropped bean/corn. The experiment was conducted in a randomized block design with five treatments and four replications. Soil samples from the rhizosphere for microbiological analyses were collected at the flowering stage of the crops at a depth of 0.00-0.20 m. Plants stimulated fluorescent Pseudomonas spp. and Bacillus spp. in the rhizosphere, with average scores of 7.9 and 6.9 log CFU g-1 of dry soil, respectively, whereas in bare soil, these scores were 6.7 and 5.8 log CFU g-1 of dry soil for these rhizobacteria groups. However, this stimulating effect was not seen for fecal coliforms, which had an average score of 31.7 × 103 MPN g-1 of dry soil in the uncultivated area and 20.0 × 103 MPN g-1 of dry soil in crop areas. Overall, the numbers of rhizobacteria colonies in the rhizosphere soil under intercropping were higher than those observed in the rhizosphere soils of single winter and summer crops. Therefore, the presence of plants enhances the development of rhizobacteria and changes the balance among the species of microorganisms in the soil microbial community fertilized with wastewater.Sociedade Brasileira de Ciência do Solo2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100414Revista Brasileira de Ciência do Solo v.41 2017reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.1590/18069657rbcs20160109info:eu-repo/semantics/openAccessFortes Neto,PauloFortes,Nara Lúcia PerondiSilva,Eliana Maria de Araújo Mariano daBrambatti,Fabianaeng2017-05-12T00:00:00Zoai:scielo:S0100-06832017000100414Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2017-05-12T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater
title Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater
spellingShingle Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater
Fortes Neto,Paulo
rhizosphere
reclaimed water
wastewater
title_short Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater
title_full Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater
title_fullStr Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater
title_full_unstemmed Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater
title_sort Interaction between Thermotolerant Coliforms and Rhizobacteria in Soil Fertilized with Treated Domestic Wastewater
author Fortes Neto,Paulo
author_facet Fortes Neto,Paulo
Fortes,Nara Lúcia Perondi
Silva,Eliana Maria de Araújo Mariano da
Brambatti,Fabiana
author_role author
author2 Fortes,Nara Lúcia Perondi
Silva,Eliana Maria de Araújo Mariano da
Brambatti,Fabiana
author2_role author
author
author
dc.contributor.author.fl_str_mv Fortes Neto,Paulo
Fortes,Nara Lúcia Perondi
Silva,Eliana Maria de Araújo Mariano da
Brambatti,Fabiana
dc.subject.por.fl_str_mv rhizosphere
reclaimed water
wastewater
topic rhizosphere
reclaimed water
wastewater
description ABSTRACT Studies on the survival of pathogenic microorganisms in the soil after use of wastewater for fertilization of agricultural crops report the effects of moisture, pH, organic matter, and soil temperature on microorganisms. There are few studies that assess the survival of these microorganisms in the rhizosphere of plants fertilized with wastewater. Thus, the aim of this study was to quantify the number of fecal coliforms and rhizobacteria (fluorescent Pseudomonas spp., Bacillus spp,) in the rhizosphere of winter and summer crops fertilized with wastewater. In the experiment, we used 20 plots, and each plot occupied an area of 200 m2. The treatments used in the winter crop consisted of uncultivated plots and single crops of wheat, triticale, black bean, and intercropped black bean/wheat. In the summer season, we used uncultivated plots and single crops of corn, sunflower, bean, and intercropped bean/corn. The experiment was conducted in a randomized block design with five treatments and four replications. Soil samples from the rhizosphere for microbiological analyses were collected at the flowering stage of the crops at a depth of 0.00-0.20 m. Plants stimulated fluorescent Pseudomonas spp. and Bacillus spp. in the rhizosphere, with average scores of 7.9 and 6.9 log CFU g-1 of dry soil, respectively, whereas in bare soil, these scores were 6.7 and 5.8 log CFU g-1 of dry soil for these rhizobacteria groups. However, this stimulating effect was not seen for fecal coliforms, which had an average score of 31.7 × 103 MPN g-1 of dry soil in the uncultivated area and 20.0 × 103 MPN g-1 of dry soil in crop areas. Overall, the numbers of rhizobacteria colonies in the rhizosphere soil under intercropping were higher than those observed in the rhizosphere soils of single winter and summer crops. Therefore, the presence of plants enhances the development of rhizobacteria and changes the balance among the species of microorganisms in the soil microbial community fertilized with wastewater.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100414
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832017000100414
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/18069657rbcs20160109
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.41 2017
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126521342951424