Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ciência do Solo (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100411 |
Resumo: | ABSTRACT Soils originating from the Caiuá sandstone formation have low soil organic matter (SOM), clay content, and cation exchange capacity (CEC). The predominance of one component over the other might decisively influence the CEC of these soils. Particle size distribution and selective dissolution procedures associated to a suit of methods to determine the exchangeable capacity properties might clarify the relative importance of each soil component. The objective of this work was to evaluate the contribution of the different components of the solid fraction and their intrinsic attributes to the CEC of sandy-loam soils and their relation to the total organic carbon (TOC), C:N ratio, and soil mineralogy. For this purpose, 34 soil samples were selected from the Caiuá sandstone formation with significant variation in the carbon content. Clay size fraction was characterized by X-ray diffraction, routine chemical analysis, and total specific surface area-SSA T using EGME, before and after the removal of SOM with sodium hypochlorite solution. Different values of CEC and effective cation exchange capacity (ECEC) were determined following standard procedures. The soils presented high sand content (82.9 ± 5.9 %) and the mineralogy of the clay fraction is dominated by kaolinite (>80 %) with the presence of illite, 2:1 clay minerals, and small amounts of iron and aluminum oxides. The CEC and ECEC values at pH 7.0 and ~5.6, respectively due to the SOM are 408.6 and 148.7 cmol c kg -1 of carbon, respectively. The SOM was responsible for 32 to 84 % (average 52 %) and 24 to 67 % (average of 46 %) of the CEC and ECEC of the soils, respectively. The CEC and ECEC of the inorganic fraction are 2.32 and 0.78 cmol c kg -1 of minerals, respectively. The CEC of the clay fraction increased with the TOC but decreased exponentially with the clay content. The total carbon content increased linearly with the C/N ratio. The SSA T showed a significant (p<0.05) and positive correlation with the TOC and with the CEC of the soils. |
id |
SBCS-1_f02ebb0d85717799c09471e213940dd1 |
---|---|
oai_identifier_str |
oai:scielo:S0100-06832020000100411 |
network_acronym_str |
SBCS-1 |
network_name_str |
Revista Brasileira de Ciência do Solo (Online) |
repository_id_str |
|
spelling |
Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacityC/N ratiocarbonorganic colloidsinorganic colloidsABSTRACT Soils originating from the Caiuá sandstone formation have low soil organic matter (SOM), clay content, and cation exchange capacity (CEC). The predominance of one component over the other might decisively influence the CEC of these soils. Particle size distribution and selective dissolution procedures associated to a suit of methods to determine the exchangeable capacity properties might clarify the relative importance of each soil component. The objective of this work was to evaluate the contribution of the different components of the solid fraction and their intrinsic attributes to the CEC of sandy-loam soils and their relation to the total organic carbon (TOC), C:N ratio, and soil mineralogy. For this purpose, 34 soil samples were selected from the Caiuá sandstone formation with significant variation in the carbon content. Clay size fraction was characterized by X-ray diffraction, routine chemical analysis, and total specific surface area-SSA T using EGME, before and after the removal of SOM with sodium hypochlorite solution. Different values of CEC and effective cation exchange capacity (ECEC) were determined following standard procedures. The soils presented high sand content (82.9 ± 5.9 %) and the mineralogy of the clay fraction is dominated by kaolinite (>80 %) with the presence of illite, 2:1 clay minerals, and small amounts of iron and aluminum oxides. The CEC and ECEC values at pH 7.0 and ~5.6, respectively due to the SOM are 408.6 and 148.7 cmol c kg -1 of carbon, respectively. The SOM was responsible for 32 to 84 % (average 52 %) and 24 to 67 % (average of 46 %) of the CEC and ECEC of the soils, respectively. The CEC and ECEC of the inorganic fraction are 2.32 and 0.78 cmol c kg -1 of minerals, respectively. The CEC of the clay fraction increased with the TOC but decreased exponentially with the clay content. The total carbon content increased linearly with the C/N ratio. The SSA T showed a significant (p<0.05) and positive correlation with the TOC and with the CEC of the soils.Sociedade Brasileira de Ciência do Solo2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100411Revista Brasileira de Ciência do Solo v.44 2020reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.36783/18069657rbcs20200019info:eu-repo/semantics/openAccessCosta,Antonio Carlos Saraiva daSouza Junior,Ivan Granemann deCanton,Leila CristinaGil,Luciano GrilloFigueiredo,Rodolfoeng2020-08-18T00:00:00Zoai:scielo:S0100-06832020000100411Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2020-08-18T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false |
dc.title.none.fl_str_mv |
Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity |
title |
Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity |
spellingShingle |
Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity Costa,Antonio Carlos Saraiva da C/N ratio carbon organic colloids inorganic colloids |
title_short |
Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity |
title_full |
Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity |
title_fullStr |
Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity |
title_full_unstemmed |
Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity |
title_sort |
Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity |
author |
Costa,Antonio Carlos Saraiva da |
author_facet |
Costa,Antonio Carlos Saraiva da Souza Junior,Ivan Granemann de Canton,Leila Cristina Gil,Luciano Grillo Figueiredo,Rodolfo |
author_role |
author |
author2 |
Souza Junior,Ivan Granemann de Canton,Leila Cristina Gil,Luciano Grillo Figueiredo,Rodolfo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Costa,Antonio Carlos Saraiva da Souza Junior,Ivan Granemann de Canton,Leila Cristina Gil,Luciano Grillo Figueiredo,Rodolfo |
dc.subject.por.fl_str_mv |
C/N ratio carbon organic colloids inorganic colloids |
topic |
C/N ratio carbon organic colloids inorganic colloids |
description |
ABSTRACT Soils originating from the Caiuá sandstone formation have low soil organic matter (SOM), clay content, and cation exchange capacity (CEC). The predominance of one component over the other might decisively influence the CEC of these soils. Particle size distribution and selective dissolution procedures associated to a suit of methods to determine the exchangeable capacity properties might clarify the relative importance of each soil component. The objective of this work was to evaluate the contribution of the different components of the solid fraction and their intrinsic attributes to the CEC of sandy-loam soils and their relation to the total organic carbon (TOC), C:N ratio, and soil mineralogy. For this purpose, 34 soil samples were selected from the Caiuá sandstone formation with significant variation in the carbon content. Clay size fraction was characterized by X-ray diffraction, routine chemical analysis, and total specific surface area-SSA T using EGME, before and after the removal of SOM with sodium hypochlorite solution. Different values of CEC and effective cation exchange capacity (ECEC) were determined following standard procedures. The soils presented high sand content (82.9 ± 5.9 %) and the mineralogy of the clay fraction is dominated by kaolinite (>80 %) with the presence of illite, 2:1 clay minerals, and small amounts of iron and aluminum oxides. The CEC and ECEC values at pH 7.0 and ~5.6, respectively due to the SOM are 408.6 and 148.7 cmol c kg -1 of carbon, respectively. The SOM was responsible for 32 to 84 % (average 52 %) and 24 to 67 % (average of 46 %) of the CEC and ECEC of the soils, respectively. The CEC and ECEC of the inorganic fraction are 2.32 and 0.78 cmol c kg -1 of minerals, respectively. The CEC of the clay fraction increased with the TOC but decreased exponentially with the clay content. The total carbon content increased linearly with the C/N ratio. The SSA T showed a significant (p<0.05) and positive correlation with the TOC and with the CEC of the soils. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100411 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100411 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.36783/18069657rbcs20200019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
Revista Brasileira de Ciência do Solo v.44 2020 reponame:Revista Brasileira de Ciência do Solo (Online) instname:Sociedade Brasileira de Ciência do Solo (SBCS) instacron:SBCS |
instname_str |
Sociedade Brasileira de Ciência do Solo (SBCS) |
instacron_str |
SBCS |
institution |
SBCS |
reponame_str |
Revista Brasileira de Ciência do Solo (Online) |
collection |
Revista Brasileira de Ciência do Solo (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS) |
repository.mail.fl_str_mv |
||sbcs@ufv.br |
_version_ |
1752126522310787072 |