Optimization and functionality of millet supplemented pasta

Detalhes bibliográficos
Autor(a) principal: Gull,Amir
Data de Publicação: 2015
Outros Autores: Prasad,Kamlesh, Kumar,Pradyuman
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Food Science and Technology (Campinas)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612015000400626
Resumo: Abstract Millets are having superior nutritional qualities and health benefits; hence they can be used for supplementation of pasta. Pasta was prepared using composite flour (CF) of durum wheat semolina (96%) and carrot pomace (4%) supplemented with finger millet flour (FMF, 0-20g), pearl millet flour (PMF, 0-30g) and carboxy methyl cellulose (CMC, 2-4g). Second order polynomial described the effect of FMF, PMF and CMC on lightness, firmness, gruel loss and overall acceptability of extruded pasta products. Results indicate that an increasing proportion of finger and pearl millet flour had signed (p≤0.05) negative effect on lightness, firmness, gruel loss and overall acceptability. However, CMC addition showed significant (p≤0. 05) positive effect on firmness, overall acceptability and negative effect on gruel loss of cooked pasta samples. Numeric optimization results showed that optimum values for extruded pasta were 20g FMF, 12g PMF and 4g CMC per 100g of CF and 34ml water with 0.981 desirability. The pasta developed is nutritionally rich as it contains protein (10.16g), fat (6g), dietary fiber (16.71g), calcium (4.23mg), iron (3.99mg) and zinc (1.682mg) per 100g.
id SBCTA-1_095f9562a31c7229db631dfc648a1d57
oai_identifier_str oai:scielo:S0101-20612015000400626
network_acronym_str SBCTA-1
network_name_str Food Science and Technology (Campinas)
repository_id_str
spelling Optimization and functionality of millet supplemented pastafinger milletpearl milletpastafirmnessgruel losscarboxy methyl celluloseAbstract Millets are having superior nutritional qualities and health benefits; hence they can be used for supplementation of pasta. Pasta was prepared using composite flour (CF) of durum wheat semolina (96%) and carrot pomace (4%) supplemented with finger millet flour (FMF, 0-20g), pearl millet flour (PMF, 0-30g) and carboxy methyl cellulose (CMC, 2-4g). Second order polynomial described the effect of FMF, PMF and CMC on lightness, firmness, gruel loss and overall acceptability of extruded pasta products. Results indicate that an increasing proportion of finger and pearl millet flour had signed (p≤0.05) negative effect on lightness, firmness, gruel loss and overall acceptability. However, CMC addition showed significant (p≤0. 05) positive effect on firmness, overall acceptability and negative effect on gruel loss of cooked pasta samples. Numeric optimization results showed that optimum values for extruded pasta were 20g FMF, 12g PMF and 4g CMC per 100g of CF and 34ml water with 0.981 desirability. The pasta developed is nutritionally rich as it contains protein (10.16g), fat (6g), dietary fiber (16.71g), calcium (4.23mg), iron (3.99mg) and zinc (1.682mg) per 100g.Sociedade Brasileira de Ciência e Tecnologia de Alimentos2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612015000400626Food Science and Technology v.35 n.4 2015reponame:Food Science and Technology (Campinas)instname:Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)instacron:SBCTA10.1590/1678-457X.6745info:eu-repo/semantics/openAccessGull,AmirPrasad,KamleshKumar,Pradyumaneng2015-12-21T00:00:00Zoai:scielo:S0101-20612015000400626Revistahttp://www.scielo.br/ctaONGhttps://old.scielo.br/oai/scielo-oai.php||revista@sbcta.org.br1678-457X0101-2061opendoar:2015-12-21T00:00Food Science and Technology (Campinas) - Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)false
dc.title.none.fl_str_mv Optimization and functionality of millet supplemented pasta
title Optimization and functionality of millet supplemented pasta
spellingShingle Optimization and functionality of millet supplemented pasta
Gull,Amir
finger millet
pearl millet
pasta
firmness
gruel loss
carboxy methyl cellulose
title_short Optimization and functionality of millet supplemented pasta
title_full Optimization and functionality of millet supplemented pasta
title_fullStr Optimization and functionality of millet supplemented pasta
title_full_unstemmed Optimization and functionality of millet supplemented pasta
title_sort Optimization and functionality of millet supplemented pasta
author Gull,Amir
author_facet Gull,Amir
Prasad,Kamlesh
Kumar,Pradyuman
author_role author
author2 Prasad,Kamlesh
Kumar,Pradyuman
author2_role author
author
dc.contributor.author.fl_str_mv Gull,Amir
Prasad,Kamlesh
Kumar,Pradyuman
dc.subject.por.fl_str_mv finger millet
pearl millet
pasta
firmness
gruel loss
carboxy methyl cellulose
topic finger millet
pearl millet
pasta
firmness
gruel loss
carboxy methyl cellulose
description Abstract Millets are having superior nutritional qualities and health benefits; hence they can be used for supplementation of pasta. Pasta was prepared using composite flour (CF) of durum wheat semolina (96%) and carrot pomace (4%) supplemented with finger millet flour (FMF, 0-20g), pearl millet flour (PMF, 0-30g) and carboxy methyl cellulose (CMC, 2-4g). Second order polynomial described the effect of FMF, PMF and CMC on lightness, firmness, gruel loss and overall acceptability of extruded pasta products. Results indicate that an increasing proportion of finger and pearl millet flour had signed (p≤0.05) negative effect on lightness, firmness, gruel loss and overall acceptability. However, CMC addition showed significant (p≤0. 05) positive effect on firmness, overall acceptability and negative effect on gruel loss of cooked pasta samples. Numeric optimization results showed that optimum values for extruded pasta were 20g FMF, 12g PMF and 4g CMC per 100g of CF and 34ml water with 0.981 desirability. The pasta developed is nutritionally rich as it contains protein (10.16g), fat (6g), dietary fiber (16.71g), calcium (4.23mg), iron (3.99mg) and zinc (1.682mg) per 100g.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612015000400626
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612015000400626
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-457X.6745
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência e Tecnologia de Alimentos
publisher.none.fl_str_mv Sociedade Brasileira de Ciência e Tecnologia de Alimentos
dc.source.none.fl_str_mv Food Science and Technology v.35 n.4 2015
reponame:Food Science and Technology (Campinas)
instname:Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)
instacron:SBCTA
instname_str Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)
instacron_str SBCTA
institution SBCTA
reponame_str Food Science and Technology (Campinas)
collection Food Science and Technology (Campinas)
repository.name.fl_str_mv Food Science and Technology (Campinas) - Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)
repository.mail.fl_str_mv ||revista@sbcta.org.br
_version_ 1752126319947153408