The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons

Detalhes bibliográficos
Autor(a) principal: YANG,Huimin
Data de Publicação: 2022
Outros Autores: LI,Zhiwang
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Food Science and Technology (Campinas)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100414
Resumo: Abstract The purpose of this study was to explore the inhibitory effect of α-methyl-5- hydroxytryptamine (α-methyl-5-HT) on ATP-activated current (IATP) in rat dorsal root ganglion (DRG) neurons. Whole-cell patch clamp experiment was performed on cultured rat DRG neurons. One minute after treatment with α-methyl-5-HT, ATP (10-4 mol/L) activation current in rat DRG neurons was inhibited. However, this inhibitory effect was independent of the current caused by α-methyl-5-HT. The dose-response curve for IATP showed that α-methyl-5-HT significantly shifted it. The Kd values of ATP-activated currents before and after the pre-addition of α-methyl-5-HT were similar (4.23×10-5 mol/L vs. 6.81×10-5 mol/L). Furthermore, cyproheptadine (10-6 mol/L), an antagonist of 5-HT2 receptor, can reverse the inhibition of α-methyl-5-HT. After intracellular dialysis of KN93 (CaMKII inhibitor) and H7 (PKC inhibitor), this inhibition was also completely eliminated. In conclusion, our results showed that α-methyl-5-HT inhibited ATP-activated current through activating the 5-HT2 receptor and resulting in phosphorylation of the ATP receptor. It was caused by the activation of G protein coupled receptor and corresponding intracellular signaling transduction cascade.
id SBCTA-1_6e92a278047f71700c7403c968e421d5
oai_identifier_str oai:scielo:S0101-20612022000100414
network_acronym_str SBCTA-1
network_name_str Food Science and Technology (Campinas)
repository_id_str
spelling The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neuronsATP-activated currentα-methyl-5-HTDRGAbstract The purpose of this study was to explore the inhibitory effect of α-methyl-5- hydroxytryptamine (α-methyl-5-HT) on ATP-activated current (IATP) in rat dorsal root ganglion (DRG) neurons. Whole-cell patch clamp experiment was performed on cultured rat DRG neurons. One minute after treatment with α-methyl-5-HT, ATP (10-4 mol/L) activation current in rat DRG neurons was inhibited. However, this inhibitory effect was independent of the current caused by α-methyl-5-HT. The dose-response curve for IATP showed that α-methyl-5-HT significantly shifted it. The Kd values of ATP-activated currents before and after the pre-addition of α-methyl-5-HT were similar (4.23×10-5 mol/L vs. 6.81×10-5 mol/L). Furthermore, cyproheptadine (10-6 mol/L), an antagonist of 5-HT2 receptor, can reverse the inhibition of α-methyl-5-HT. After intracellular dialysis of KN93 (CaMKII inhibitor) and H7 (PKC inhibitor), this inhibition was also completely eliminated. In conclusion, our results showed that α-methyl-5-HT inhibited ATP-activated current through activating the 5-HT2 receptor and resulting in phosphorylation of the ATP receptor. It was caused by the activation of G protein coupled receptor and corresponding intracellular signaling transduction cascade.Sociedade Brasileira de Ciência e Tecnologia de Alimentos2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100414Food Science and Technology v.42 2022reponame:Food Science and Technology (Campinas)instname:Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)instacron:SBCTA10.1590/fst.35620info:eu-repo/semantics/openAccessYANG,HuiminLI,Zhiwangeng2022-02-22T00:00:00Zoai:scielo:S0101-20612022000100414Revistahttp://www.scielo.br/ctaONGhttps://old.scielo.br/oai/scielo-oai.php||revista@sbcta.org.br1678-457X0101-2061opendoar:2022-02-22T00:00Food Science and Technology (Campinas) - Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)false
dc.title.none.fl_str_mv The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons
title The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons
spellingShingle The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons
YANG,Huimin
ATP-activated current
α-methyl-5-HT
DRG
title_short The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons
title_full The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons
title_fullStr The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons
title_full_unstemmed The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons
title_sort The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons
author YANG,Huimin
author_facet YANG,Huimin
LI,Zhiwang
author_role author
author2 LI,Zhiwang
author2_role author
dc.contributor.author.fl_str_mv YANG,Huimin
LI,Zhiwang
dc.subject.por.fl_str_mv ATP-activated current
α-methyl-5-HT
DRG
topic ATP-activated current
α-methyl-5-HT
DRG
description Abstract The purpose of this study was to explore the inhibitory effect of α-methyl-5- hydroxytryptamine (α-methyl-5-HT) on ATP-activated current (IATP) in rat dorsal root ganglion (DRG) neurons. Whole-cell patch clamp experiment was performed on cultured rat DRG neurons. One minute after treatment with α-methyl-5-HT, ATP (10-4 mol/L) activation current in rat DRG neurons was inhibited. However, this inhibitory effect was independent of the current caused by α-methyl-5-HT. The dose-response curve for IATP showed that α-methyl-5-HT significantly shifted it. The Kd values of ATP-activated currents before and after the pre-addition of α-methyl-5-HT were similar (4.23×10-5 mol/L vs. 6.81×10-5 mol/L). Furthermore, cyproheptadine (10-6 mol/L), an antagonist of 5-HT2 receptor, can reverse the inhibition of α-methyl-5-HT. After intracellular dialysis of KN93 (CaMKII inhibitor) and H7 (PKC inhibitor), this inhibition was also completely eliminated. In conclusion, our results showed that α-methyl-5-HT inhibited ATP-activated current through activating the 5-HT2 receptor and resulting in phosphorylation of the ATP receptor. It was caused by the activation of G protein coupled receptor and corresponding intracellular signaling transduction cascade.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100414
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100414
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/fst.35620
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência e Tecnologia de Alimentos
publisher.none.fl_str_mv Sociedade Brasileira de Ciência e Tecnologia de Alimentos
dc.source.none.fl_str_mv Food Science and Technology v.42 2022
reponame:Food Science and Technology (Campinas)
instname:Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)
instacron:SBCTA
instname_str Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)
instacron_str SBCTA
institution SBCTA
reponame_str Food Science and Technology (Campinas)
collection Food Science and Technology (Campinas)
repository.name.fl_str_mv Food Science and Technology (Campinas) - Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)
repository.mail.fl_str_mv ||revista@sbcta.org.br
_version_ 1752126331468906496