Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condiments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Food Science and Technology (Campinas) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000101344 |
Resumo: | Abstract Five condiments, including cinnamon, tangerine peel, clove, licorice, amomum, were selected as the research objects in Guangxi, China. The combustion heat, differential thermal gravimetric analysis, fat, crude fiber, trace element, calcium and ash content data for 5 condiments were determined. According to the combustion heat, differential thermal gravimetric analysis, fat, crude fiber, trace element, calcium and ash content data of condiments, we constructed a systematic multi-index comprehensive evaluation system using entropy analysis, gray pattern recognition and grey correlation coefficient cluster analysis. The multi-index comprehensive evaluation system established by the research provides a new idea for the nutritional evaluation of condiments. This research provides a strong scientific basis for the large-scale development of condiment resources and condiment classification research, basic support for the selection of condiment raw materials. |
id |
SBCTA-1_d97680a283cba1ad829e83431f5ac9d6 |
---|---|
oai_identifier_str |
oai:scielo:S0101-20612022000101344 |
network_acronym_str |
SBCTA-1 |
network_name_str |
Food Science and Technology (Campinas) |
repository_id_str |
|
spelling |
Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condimentscondimentsentropy methodthermo gravimetric analysisICP-OEStrace elementsAbstract Five condiments, including cinnamon, tangerine peel, clove, licorice, amomum, were selected as the research objects in Guangxi, China. The combustion heat, differential thermal gravimetric analysis, fat, crude fiber, trace element, calcium and ash content data for 5 condiments were determined. According to the combustion heat, differential thermal gravimetric analysis, fat, crude fiber, trace element, calcium and ash content data of condiments, we constructed a systematic multi-index comprehensive evaluation system using entropy analysis, gray pattern recognition and grey correlation coefficient cluster analysis. The multi-index comprehensive evaluation system established by the research provides a new idea for the nutritional evaluation of condiments. This research provides a strong scientific basis for the large-scale development of condiment resources and condiment classification research, basic support for the selection of condiment raw materials.Sociedade Brasileira de Ciência e Tecnologia de Alimentos2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000101344Food Science and Technology v.42 2022reponame:Food Science and Technology (Campinas)instname:Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)instacron:SBCTA10.1590/fst.81122info:eu-repo/semantics/openAccessZHOU,LibingJIANG,CaiyunZHONG,TinZHU,Maohuaeng2022-09-21T00:00:00Zoai:scielo:S0101-20612022000101344Revistahttp://www.scielo.br/ctaONGhttps://old.scielo.br/oai/scielo-oai.php||revista@sbcta.org.br1678-457X0101-2061opendoar:2022-09-21T00:00Food Science and Technology (Campinas) - Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)false |
dc.title.none.fl_str_mv |
Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condiments |
title |
Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condiments |
spellingShingle |
Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condiments ZHOU,Libing condiments entropy method thermo gravimetric analysis ICP-OES trace elements |
title_short |
Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condiments |
title_full |
Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condiments |
title_fullStr |
Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condiments |
title_full_unstemmed |
Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condiments |
title_sort |
Entropy analysis and grey correlation coefficient cluster analysis of multiple indexes of 5 kinds of condiments |
author |
ZHOU,Libing |
author_facet |
ZHOU,Libing JIANG,Caiyun ZHONG,Tin ZHU,Maohua |
author_role |
author |
author2 |
JIANG,Caiyun ZHONG,Tin ZHU,Maohua |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
ZHOU,Libing JIANG,Caiyun ZHONG,Tin ZHU,Maohua |
dc.subject.por.fl_str_mv |
condiments entropy method thermo gravimetric analysis ICP-OES trace elements |
topic |
condiments entropy method thermo gravimetric analysis ICP-OES trace elements |
description |
Abstract Five condiments, including cinnamon, tangerine peel, clove, licorice, amomum, were selected as the research objects in Guangxi, China. The combustion heat, differential thermal gravimetric analysis, fat, crude fiber, trace element, calcium and ash content data for 5 condiments were determined. According to the combustion heat, differential thermal gravimetric analysis, fat, crude fiber, trace element, calcium and ash content data of condiments, we constructed a systematic multi-index comprehensive evaluation system using entropy analysis, gray pattern recognition and grey correlation coefficient cluster analysis. The multi-index comprehensive evaluation system established by the research provides a new idea for the nutritional evaluation of condiments. This research provides a strong scientific basis for the large-scale development of condiment resources and condiment classification research, basic support for the selection of condiment raw materials. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000101344 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000101344 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/fst.81122 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência e Tecnologia de Alimentos |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência e Tecnologia de Alimentos |
dc.source.none.fl_str_mv |
Food Science and Technology v.42 2022 reponame:Food Science and Technology (Campinas) instname:Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA) instacron:SBCTA |
instname_str |
Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA) |
instacron_str |
SBCTA |
institution |
SBCTA |
reponame_str |
Food Science and Technology (Campinas) |
collection |
Food Science and Technology (Campinas) |
repository.name.fl_str_mv |
Food Science and Technology (Campinas) - Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA) |
repository.mail.fl_str_mv |
||revista@sbcta.org.br |
_version_ |
1752126335435669504 |