Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Acta Cirúrgica Brasileira (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502022000300201 |
Resumo: | ABSTRACT Purpose: Poultry by-products can contribute as an innovative natural source for the development of composites based on polymers and minerals aiming at bone regeneration. The objective of this study was the physicochemical and biological characterization of collagen-based hydrogels crosslinked with ultraviolet (UV)-riboflavin. Methods: Pure hydrogels of 100% collagen (G1) or hybrid hydrogels, 90% collagen:10% apatite (G2), 90% collagen:10% nanokeratin (G3), and 90% collagen:5% apatite:5% nanokeratin (G4) were characterized by scanning electron microscope, Fourier-transform infrared spectroscopy, differential scanning calorimetry, swelling degree and quali-quantitative histological analysis. Ectopic implantation in subcutaneous tissue in mice at one, three and nine weeks allowed to assess the inflammation (neutrophils, lymphocytes, macrophages, and giant cells) and repair (neovascularization, and connective tissue) to determine biocompatibility and the integrity of biomaterials to score their biodegradability. Histomorphometry on critical size defects in rat calvaria at one and three months evaluated the percentage of bone, connective tissue, and biomaterials in all groups. Results: The hydrogels presented porous microstructure, water absorption and physicochemical characteristics compatible with their polymeric and/or mineral composition. All materials exhibited biocompatibility, biodegradability, and low osteoconductivity. G2 showed greater density of new bone and biomaterial than the G1, G3 and G4. Conclusions: The collagen-apatite group formulation suggests potential for development as osteopromoting membrane. |
id |
SBDPC-1_9a1a008209c924fcc982d7a3262cdc49 |
---|---|
oai_identifier_str |
oai:scielo:S0102-86502022000300201 |
network_acronym_str |
SBDPC-1 |
network_name_str |
Acta Cirúrgica Brasileira (Online) |
repository_id_str |
|
spelling |
Development and characterization of poultry collagen-based hybrid hydrogels for bone regenerationHydrogelsCollagenApatitesMaterials TestingGuided Tissue RegenerationABSTRACT Purpose: Poultry by-products can contribute as an innovative natural source for the development of composites based on polymers and minerals aiming at bone regeneration. The objective of this study was the physicochemical and biological characterization of collagen-based hydrogels crosslinked with ultraviolet (UV)-riboflavin. Methods: Pure hydrogels of 100% collagen (G1) or hybrid hydrogels, 90% collagen:10% apatite (G2), 90% collagen:10% nanokeratin (G3), and 90% collagen:5% apatite:5% nanokeratin (G4) were characterized by scanning electron microscope, Fourier-transform infrared spectroscopy, differential scanning calorimetry, swelling degree and quali-quantitative histological analysis. Ectopic implantation in subcutaneous tissue in mice at one, three and nine weeks allowed to assess the inflammation (neutrophils, lymphocytes, macrophages, and giant cells) and repair (neovascularization, and connective tissue) to determine biocompatibility and the integrity of biomaterials to score their biodegradability. Histomorphometry on critical size defects in rat calvaria at one and three months evaluated the percentage of bone, connective tissue, and biomaterials in all groups. Results: The hydrogels presented porous microstructure, water absorption and physicochemical characteristics compatible with their polymeric and/or mineral composition. All materials exhibited biocompatibility, biodegradability, and low osteoconductivity. G2 showed greater density of new bone and biomaterial than the G1, G3 and G4. Conclusions: The collagen-apatite group formulation suggests potential for development as osteopromoting membrane.Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502022000300201Acta Cirúrgica Brasileira v.37 n.3 2022reponame:Acta Cirúrgica Brasileira (Online)instname:Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia (SBDPC)instacron:SBDPC10.1590/acb370302info:eu-repo/semantics/openAccessSouza,Francisco Fábio Pereira dePérez-Guerrero,Jesús AlbertoGomes,Maria Janaína PaulaCavalcante,Fábio LimaSouza Filho,Men de Sá Moreira deCastro-Silva,Igor Iucoeng2022-05-10T00:00:00Zoai:scielo:S0102-86502022000300201Revistahttps://www.bvs-vet.org.br/vetindex/periodicos/acta-cirurgica-brasileira/https://old.scielo.br/oai/scielo-oai.php||sgolden@terra.com.br0102-86501678-2674opendoar:2022-05-10T00:00Acta Cirúrgica Brasileira (Online) - Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia (SBDPC)false |
dc.title.none.fl_str_mv |
Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration |
title |
Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration |
spellingShingle |
Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration Souza,Francisco Fábio Pereira de Hydrogels Collagen Apatites Materials Testing Guided Tissue Regeneration |
title_short |
Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration |
title_full |
Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration |
title_fullStr |
Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration |
title_full_unstemmed |
Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration |
title_sort |
Development and characterization of poultry collagen-based hybrid hydrogels for bone regeneration |
author |
Souza,Francisco Fábio Pereira de |
author_facet |
Souza,Francisco Fábio Pereira de Pérez-Guerrero,Jesús Alberto Gomes,Maria Janaína Paula Cavalcante,Fábio Lima Souza Filho,Men de Sá Moreira de Castro-Silva,Igor Iuco |
author_role |
author |
author2 |
Pérez-Guerrero,Jesús Alberto Gomes,Maria Janaína Paula Cavalcante,Fábio Lima Souza Filho,Men de Sá Moreira de Castro-Silva,Igor Iuco |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Souza,Francisco Fábio Pereira de Pérez-Guerrero,Jesús Alberto Gomes,Maria Janaína Paula Cavalcante,Fábio Lima Souza Filho,Men de Sá Moreira de Castro-Silva,Igor Iuco |
dc.subject.por.fl_str_mv |
Hydrogels Collagen Apatites Materials Testing Guided Tissue Regeneration |
topic |
Hydrogels Collagen Apatites Materials Testing Guided Tissue Regeneration |
description |
ABSTRACT Purpose: Poultry by-products can contribute as an innovative natural source for the development of composites based on polymers and minerals aiming at bone regeneration. The objective of this study was the physicochemical and biological characterization of collagen-based hydrogels crosslinked with ultraviolet (UV)-riboflavin. Methods: Pure hydrogels of 100% collagen (G1) or hybrid hydrogels, 90% collagen:10% apatite (G2), 90% collagen:10% nanokeratin (G3), and 90% collagen:5% apatite:5% nanokeratin (G4) were characterized by scanning electron microscope, Fourier-transform infrared spectroscopy, differential scanning calorimetry, swelling degree and quali-quantitative histological analysis. Ectopic implantation in subcutaneous tissue in mice at one, three and nine weeks allowed to assess the inflammation (neutrophils, lymphocytes, macrophages, and giant cells) and repair (neovascularization, and connective tissue) to determine biocompatibility and the integrity of biomaterials to score their biodegradability. Histomorphometry on critical size defects in rat calvaria at one and three months evaluated the percentage of bone, connective tissue, and biomaterials in all groups. Results: The hydrogels presented porous microstructure, water absorption and physicochemical characteristics compatible with their polymeric and/or mineral composition. All materials exhibited biocompatibility, biodegradability, and low osteoconductivity. G2 showed greater density of new bone and biomaterial than the G1, G3 and G4. Conclusions: The collagen-apatite group formulation suggests potential for development as osteopromoting membrane. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502022000300201 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502022000300201 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/acb370302 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia |
publisher.none.fl_str_mv |
Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia |
dc.source.none.fl_str_mv |
Acta Cirúrgica Brasileira v.37 n.3 2022 reponame:Acta Cirúrgica Brasileira (Online) instname:Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia (SBDPC) instacron:SBDPC |
instname_str |
Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia (SBDPC) |
instacron_str |
SBDPC |
institution |
SBDPC |
reponame_str |
Acta Cirúrgica Brasileira (Online) |
collection |
Acta Cirúrgica Brasileira (Online) |
repository.name.fl_str_mv |
Acta Cirúrgica Brasileira (Online) - Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia (SBDPC) |
repository.mail.fl_str_mv |
||sgolden@terra.com.br |
_version_ |
1752126446376058880 |