MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES

Detalhes bibliográficos
Autor(a) principal: Zanella,Marco A.
Data de Publicação: 2019
Outros Autores: Queiroz,Daniel M. de, Valente,Domingos S. M., Pinto,Francisco de A. de C., Santos,Nerilson T.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Engenharia Agrícola
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162019000500676
Resumo: ABSTRACT The delimitation of management classes is critical for successful precision agriculture. This process involves choosing the variables to use and analyzing the spatial variability of the variables. Thus, the objective of this study was to analyze the correlation between management class maps generated from orbital images and yield maps. A 95-hectare area of rainfed grain was evaluated. Yield maps were obtained for the 2015/2016 and 2016/2017 soybean crops. Orbital images were used from two dates for each crop to generate vegetation index maps. The spatial correlation between the vegetation indices and the yield maps was obtained using a bivariate Moran index. The delineated management classes were compared using the Kappa index. This study demonstrated that the Kappa values resulting from the comparison between the management class maps generated from the soybean yield and the vegetation index ranged from 5% to 67% depending on the number of delineated classes. The highest Kappa values were observed when the area was delineated into three classes.
id SBEA-1_0e67d118d0b124a08ea2b39cf3a602b9
oai_identifier_str oai:scielo:S0100-69162019000500676
network_acronym_str SBEA-1
network_name_str Engenharia Agrícola
repository_id_str
spelling MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGESprecision agriculturevegetation indexyield mapABSTRACT The delimitation of management classes is critical for successful precision agriculture. This process involves choosing the variables to use and analyzing the spatial variability of the variables. Thus, the objective of this study was to analyze the correlation between management class maps generated from orbital images and yield maps. A 95-hectare area of rainfed grain was evaluated. Yield maps were obtained for the 2015/2016 and 2016/2017 soybean crops. Orbital images were used from two dates for each crop to generate vegetation index maps. The spatial correlation between the vegetation indices and the yield maps was obtained using a bivariate Moran index. The delineated management classes were compared using the Kappa index. This study demonstrated that the Kappa values resulting from the comparison between the management class maps generated from the soybean yield and the vegetation index ranged from 5% to 67% depending on the number of delineated classes. The highest Kappa values were observed when the area was delineated into three classes.Associação Brasileira de Engenharia Agrícola2019-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162019000500676Engenharia Agrícola v.39 n.5 2019reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v39n5p676-683/2019info:eu-repo/semantics/openAccessZanella,Marco A.Queiroz,Daniel M. deValente,Domingos S. M.Pinto,Francisco de A. de C.Santos,Nerilson T.eng2019-10-29T00:00:00Zoai:scielo:S0100-69162019000500676Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2019-10-29T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false
dc.title.none.fl_str_mv MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES
title MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES
spellingShingle MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES
Zanella,Marco A.
precision agriculture
vegetation index
yield map
title_short MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES
title_full MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES
title_fullStr MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES
title_full_unstemmed MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES
title_sort MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES
author Zanella,Marco A.
author_facet Zanella,Marco A.
Queiroz,Daniel M. de
Valente,Domingos S. M.
Pinto,Francisco de A. de C.
Santos,Nerilson T.
author_role author
author2 Queiroz,Daniel M. de
Valente,Domingos S. M.
Pinto,Francisco de A. de C.
Santos,Nerilson T.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Zanella,Marco A.
Queiroz,Daniel M. de
Valente,Domingos S. M.
Pinto,Francisco de A. de C.
Santos,Nerilson T.
dc.subject.por.fl_str_mv precision agriculture
vegetation index
yield map
topic precision agriculture
vegetation index
yield map
description ABSTRACT The delimitation of management classes is critical for successful precision agriculture. This process involves choosing the variables to use and analyzing the spatial variability of the variables. Thus, the objective of this study was to analyze the correlation between management class maps generated from orbital images and yield maps. A 95-hectare area of rainfed grain was evaluated. Yield maps were obtained for the 2015/2016 and 2016/2017 soybean crops. Orbital images were used from two dates for each crop to generate vegetation index maps. The spatial correlation between the vegetation indices and the yield maps was obtained using a bivariate Moran index. The delineated management classes were compared using the Kappa index. This study demonstrated that the Kappa values resulting from the comparison between the management class maps generated from the soybean yield and the vegetation index ranged from 5% to 67% depending on the number of delineated classes. The highest Kappa values were observed when the area was delineated into three classes.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162019000500676
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162019000500676
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1809-4430-eng.agric.v39n5p676-683/2019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
dc.source.none.fl_str_mv Engenharia Agrícola v.39 n.5 2019
reponame:Engenharia Agrícola
instname:Associação Brasileira de Engenharia Agrícola (SBEA)
instacron:SBEA
instname_str Associação Brasileira de Engenharia Agrícola (SBEA)
instacron_str SBEA
institution SBEA
reponame_str Engenharia Agrícola
collection Engenharia Agrícola
repository.name.fl_str_mv Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)
repository.mail.fl_str_mv revistasbea@sbea.org.br||sbea@sbea.org.br
_version_ 1752126274456780800