MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Engenharia Agrícola |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162019000500676 |
Resumo: | ABSTRACT The delimitation of management classes is critical for successful precision agriculture. This process involves choosing the variables to use and analyzing the spatial variability of the variables. Thus, the objective of this study was to analyze the correlation between management class maps generated from orbital images and yield maps. A 95-hectare area of rainfed grain was evaluated. Yield maps were obtained for the 2015/2016 and 2016/2017 soybean crops. Orbital images were used from two dates for each crop to generate vegetation index maps. The spatial correlation between the vegetation indices and the yield maps was obtained using a bivariate Moran index. The delineated management classes were compared using the Kappa index. This study demonstrated that the Kappa values resulting from the comparison between the management class maps generated from the soybean yield and the vegetation index ranged from 5% to 67% depending on the number of delineated classes. The highest Kappa values were observed when the area was delineated into three classes. |
id |
SBEA-1_0e67d118d0b124a08ea2b39cf3a602b9 |
---|---|
oai_identifier_str |
oai:scielo:S0100-69162019000500676 |
network_acronym_str |
SBEA-1 |
network_name_str |
Engenharia Agrícola |
repository_id_str |
|
spelling |
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGESprecision agriculturevegetation indexyield mapABSTRACT The delimitation of management classes is critical for successful precision agriculture. This process involves choosing the variables to use and analyzing the spatial variability of the variables. Thus, the objective of this study was to analyze the correlation between management class maps generated from orbital images and yield maps. A 95-hectare area of rainfed grain was evaluated. Yield maps were obtained for the 2015/2016 and 2016/2017 soybean crops. Orbital images were used from two dates for each crop to generate vegetation index maps. The spatial correlation between the vegetation indices and the yield maps was obtained using a bivariate Moran index. The delineated management classes were compared using the Kappa index. This study demonstrated that the Kappa values resulting from the comparison between the management class maps generated from the soybean yield and the vegetation index ranged from 5% to 67% depending on the number of delineated classes. The highest Kappa values were observed when the area was delineated into three classes.Associação Brasileira de Engenharia Agrícola2019-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162019000500676Engenharia Agrícola v.39 n.5 2019reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v39n5p676-683/2019info:eu-repo/semantics/openAccessZanella,Marco A.Queiroz,Daniel M. deValente,Domingos S. M.Pinto,Francisco de A. de C.Santos,Nerilson T.eng2019-10-29T00:00:00Zoai:scielo:S0100-69162019000500676Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2019-10-29T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false |
dc.title.none.fl_str_mv |
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES |
title |
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES |
spellingShingle |
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES Zanella,Marco A. precision agriculture vegetation index yield map |
title_short |
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES |
title_full |
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES |
title_fullStr |
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES |
title_full_unstemmed |
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES |
title_sort |
MANAGEMENT CLASS DELIMITATION IN A SOYBEAN CROP USING ORBITAL IMAGES |
author |
Zanella,Marco A. |
author_facet |
Zanella,Marco A. Queiroz,Daniel M. de Valente,Domingos S. M. Pinto,Francisco de A. de C. Santos,Nerilson T. |
author_role |
author |
author2 |
Queiroz,Daniel M. de Valente,Domingos S. M. Pinto,Francisco de A. de C. Santos,Nerilson T. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Zanella,Marco A. Queiroz,Daniel M. de Valente,Domingos S. M. Pinto,Francisco de A. de C. Santos,Nerilson T. |
dc.subject.por.fl_str_mv |
precision agriculture vegetation index yield map |
topic |
precision agriculture vegetation index yield map |
description |
ABSTRACT The delimitation of management classes is critical for successful precision agriculture. This process involves choosing the variables to use and analyzing the spatial variability of the variables. Thus, the objective of this study was to analyze the correlation between management class maps generated from orbital images and yield maps. A 95-hectare area of rainfed grain was evaluated. Yield maps were obtained for the 2015/2016 and 2016/2017 soybean crops. Orbital images were used from two dates for each crop to generate vegetation index maps. The spatial correlation between the vegetation indices and the yield maps was obtained using a bivariate Moran index. The delineated management classes were compared using the Kappa index. This study demonstrated that the Kappa values resulting from the comparison between the management class maps generated from the soybean yield and the vegetation index ranged from 5% to 67% depending on the number of delineated classes. The highest Kappa values were observed when the area was delineated into three classes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162019000500676 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162019000500676 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1809-4430-eng.agric.v39n5p676-683/2019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
dc.source.none.fl_str_mv |
Engenharia Agrícola v.39 n.5 2019 reponame:Engenharia Agrícola instname:Associação Brasileira de Engenharia Agrícola (SBEA) instacron:SBEA |
instname_str |
Associação Brasileira de Engenharia Agrícola (SBEA) |
instacron_str |
SBEA |
institution |
SBEA |
reponame_str |
Engenharia Agrícola |
collection |
Engenharia Agrícola |
repository.name.fl_str_mv |
Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA) |
repository.mail.fl_str_mv |
revistasbea@sbea.org.br||sbea@sbea.org.br |
_version_ |
1752126274456780800 |