NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Engenharia Agrícola |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000100034 |
Resumo: | ABSTRACT Considering the challenges faced by poultry farming, this study aimed to develop a neuro-fuzzy model to predict eyeball and crest temperatures of egg-laying hens based on environmental conditions (dry bulb temperature and relative humidity). To develop the models and simulations, Matlab’s Fuzzy Toolbox® (Anfisedit) was used. Different configurations were used for each of the several neuro-fuzzy models developed. Eyeball temperature (ET) and chicken crest temperature (CCT) were simulated from the developed neuro-fuzzy models, and the obtained results were validated with the variables collected experimentally with the aid of recorder sensors and an infrared thermographic camera. The proposed neuro-fuzzy models allow the accurate estimation of ET and CCT of two lineages of egg-laying hens raised in conventional aviaries, thus helping in decision-making for better animal welfare. |
id |
SBEA-1_315dd92bf7b704f344dd1a78cd311c9e |
---|---|
oai_identifier_str |
oai:scielo:S0100-69162021000100034 |
network_acronym_str |
SBEA-1 |
network_name_str |
Engenharia Agrícola |
repository_id_str |
|
spelling |
NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENSNeuro-fuzzyThermographyPoultry farmingSimulationArtificial intelligenceABSTRACT Considering the challenges faced by poultry farming, this study aimed to develop a neuro-fuzzy model to predict eyeball and crest temperatures of egg-laying hens based on environmental conditions (dry bulb temperature and relative humidity). To develop the models and simulations, Matlab’s Fuzzy Toolbox® (Anfisedit) was used. Different configurations were used for each of the several neuro-fuzzy models developed. Eyeball temperature (ET) and chicken crest temperature (CCT) were simulated from the developed neuro-fuzzy models, and the obtained results were validated with the variables collected experimentally with the aid of recorder sensors and an infrared thermographic camera. The proposed neuro-fuzzy models allow the accurate estimation of ET and CCT of two lineages of egg-laying hens raised in conventional aviaries, thus helping in decision-making for better animal welfare.Associação Brasileira de Engenharia Agrícola2021-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000100034Engenharia Agrícola v.41 n.1 2021reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v41n1p34-38/2021info:eu-repo/semantics/openAccessLins,Ana C. de S. S.Lourençoni,DianYanagi Júnior,TadayukiMiranda,Isadora B.Santos,Italo E. dos A.eng2021-02-25T00:00:00Zoai:scielo:S0100-69162021000100034Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2021-02-25T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false |
dc.title.none.fl_str_mv |
NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENS |
title |
NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENS |
spellingShingle |
NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENS Lins,Ana C. de S. S. Neuro-fuzzy Thermography Poultry farming Simulation Artificial intelligence |
title_short |
NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENS |
title_full |
NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENS |
title_fullStr |
NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENS |
title_full_unstemmed |
NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENS |
title_sort |
NEURO-FUZZY MODELING OF EYEBALL AND CREST TEMPERATURES IN EGG-LAYING HENS |
author |
Lins,Ana C. de S. S. |
author_facet |
Lins,Ana C. de S. S. Lourençoni,Dian Yanagi Júnior,Tadayuki Miranda,Isadora B. Santos,Italo E. dos A. |
author_role |
author |
author2 |
Lourençoni,Dian Yanagi Júnior,Tadayuki Miranda,Isadora B. Santos,Italo E. dos A. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Lins,Ana C. de S. S. Lourençoni,Dian Yanagi Júnior,Tadayuki Miranda,Isadora B. Santos,Italo E. dos A. |
dc.subject.por.fl_str_mv |
Neuro-fuzzy Thermography Poultry farming Simulation Artificial intelligence |
topic |
Neuro-fuzzy Thermography Poultry farming Simulation Artificial intelligence |
description |
ABSTRACT Considering the challenges faced by poultry farming, this study aimed to develop a neuro-fuzzy model to predict eyeball and crest temperatures of egg-laying hens based on environmental conditions (dry bulb temperature and relative humidity). To develop the models and simulations, Matlab’s Fuzzy Toolbox® (Anfisedit) was used. Different configurations were used for each of the several neuro-fuzzy models developed. Eyeball temperature (ET) and chicken crest temperature (CCT) were simulated from the developed neuro-fuzzy models, and the obtained results were validated with the variables collected experimentally with the aid of recorder sensors and an infrared thermographic camera. The proposed neuro-fuzzy models allow the accurate estimation of ET and CCT of two lineages of egg-laying hens raised in conventional aviaries, thus helping in decision-making for better animal welfare. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000100034 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000100034 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1809-4430-eng.agric.v41n1p34-38/2021 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
dc.source.none.fl_str_mv |
Engenharia Agrícola v.41 n.1 2021 reponame:Engenharia Agrícola instname:Associação Brasileira de Engenharia Agrícola (SBEA) instacron:SBEA |
instname_str |
Associação Brasileira de Engenharia Agrícola (SBEA) |
instacron_str |
SBEA |
institution |
SBEA |
reponame_str |
Engenharia Agrícola |
collection |
Engenharia Agrícola |
repository.name.fl_str_mv |
Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA) |
repository.mail.fl_str_mv |
revistasbea@sbea.org.br||sbea@sbea.org.br |
_version_ |
1752126274921299968 |