ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKS

Detalhes bibliográficos
Autor(a) principal: Borges,Pedro H. M.
Data de Publicação: 2017
Outros Autores: Mendoza,Zaíra M. S. H., Maia,João C. S., Bianchini,Aloísio, Fernándes,Haroldo C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Engenharia Agrícola
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000100136
Resumo: ABSTRACT This study aimed to develop artificial neural networks for the estimation of tractor fuel consumption during soil preparation, according to the adopted system. The multilayer perceptron network was chosen. As input data: the soil mechanical penetration resistance, the mobilized area by implements, the working gear and the tractor engine speed. The number of layers and neurons varied to form different architectures. The adjustment was verified based on various statistical criteria. The values estimated by the networks did not differ significantly from those obtained experimentally. The conclusion was that the networks showed adequate reliability and accuracy to predicting the fuel consumption in each tillage system, in function of the input data and this can be a useful tool for planning and management of agricultural operations.
id SBEA-1_896501e41c5329dcd166149c7305857c
oai_identifier_str oai:scielo:S0100-69162017000100136
network_acronym_str SBEA-1
network_name_str Engenharia Agrícola
repository_id_str
spelling ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKSmachine performanceartificial intelligenceagricultural planningABSTRACT This study aimed to develop artificial neural networks for the estimation of tractor fuel consumption during soil preparation, according to the adopted system. The multilayer perceptron network was chosen. As input data: the soil mechanical penetration resistance, the mobilized area by implements, the working gear and the tractor engine speed. The number of layers and neurons varied to form different architectures. The adjustment was verified based on various statistical criteria. The values estimated by the networks did not differ significantly from those obtained experimentally. The conclusion was that the networks showed adequate reliability and accuracy to predicting the fuel consumption in each tillage system, in function of the input data and this can be a useful tool for planning and management of agricultural operations.Associação Brasileira de Engenharia Agrícola2017-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000100136Engenharia Agrícola v.37 n.1 2017reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v37n1p136-147/2017info:eu-repo/semantics/openAccessBorges,Pedro H. M.Mendoza,Zaíra M. S. H.Maia,João C. S.Bianchini,AloísioFernándes,Haroldo C.eng2017-02-23T00:00:00Zoai:scielo:S0100-69162017000100136Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2017-02-23T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false
dc.title.none.fl_str_mv ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKS
title ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKS
spellingShingle ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKS
Borges,Pedro H. M.
machine performance
artificial intelligence
agricultural planning
title_short ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKS
title_full ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKS
title_fullStr ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKS
title_full_unstemmed ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKS
title_sort ESTIMATION OF FUEL CONSUMPTION IN AGRICULTURAL MECHANIZED OPERATIONS USING ARTIFICIAL NEURAL NETWORKS
author Borges,Pedro H. M.
author_facet Borges,Pedro H. M.
Mendoza,Zaíra M. S. H.
Maia,João C. S.
Bianchini,Aloísio
Fernándes,Haroldo C.
author_role author
author2 Mendoza,Zaíra M. S. H.
Maia,João C. S.
Bianchini,Aloísio
Fernándes,Haroldo C.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Borges,Pedro H. M.
Mendoza,Zaíra M. S. H.
Maia,João C. S.
Bianchini,Aloísio
Fernándes,Haroldo C.
dc.subject.por.fl_str_mv machine performance
artificial intelligence
agricultural planning
topic machine performance
artificial intelligence
agricultural planning
description ABSTRACT This study aimed to develop artificial neural networks for the estimation of tractor fuel consumption during soil preparation, according to the adopted system. The multilayer perceptron network was chosen. As input data: the soil mechanical penetration resistance, the mobilized area by implements, the working gear and the tractor engine speed. The number of layers and neurons varied to form different architectures. The adjustment was verified based on various statistical criteria. The values estimated by the networks did not differ significantly from those obtained experimentally. The conclusion was that the networks showed adequate reliability and accuracy to predicting the fuel consumption in each tillage system, in function of the input data and this can be a useful tool for planning and management of agricultural operations.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000100136
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000100136
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1809-4430-eng.agric.v37n1p136-147/2017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
dc.source.none.fl_str_mv Engenharia Agrícola v.37 n.1 2017
reponame:Engenharia Agrícola
instname:Associação Brasileira de Engenharia Agrícola (SBEA)
instacron:SBEA
instname_str Associação Brasileira de Engenharia Agrícola (SBEA)
instacron_str SBEA
institution SBEA
reponame_str Engenharia Agrícola
collection Engenharia Agrícola
repository.name.fl_str_mv Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)
repository.mail.fl_str_mv revistasbea@sbea.org.br||sbea@sbea.org.br
_version_ 1752126273178566656