ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING

Detalhes bibliográficos
Autor(a) principal: Uliana,Eduardo M.
Data de Publicação: 2017
Outros Autores: Silva,Demetrius D. da, Silva,José G. F. da, Fraga,Micael de S., Lisboa,Luana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Engenharia Agrícola
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000200257
Resumo: ABSTRACT This study aimed at testing the fit of continuous probability distributions to a daily reference evapotranspiration dataset (ET0) at a 75% probability level for designing of irrigation systems. Reference evapotranspiration was estimated by the Penman-Monteith method (FAO-56-PM) for eight locations, within the state of Espírito Santo (Brazil), where there are automatic gauge stations. The assessed probability distributions were beta, gamma, generalized extreme value (GEV), generalized logistic (GLO), generalized normal (GN), Gumbel (G), normal (N), Pearson type 3 (P3), Weibull (W), two- and three-parameter lognormal (LN2 and LN3). The fitting of the probability distributions to the ET0 daily dataset was checked by the Kolmogorov-Smirnov's test. Among the studied distributions, GN was the only one to fit the ET0 data for all studied months and locations. We should also infer that continuous probability models have a good fit to the studied ET0 dataset, enabling its estimation at 75% probability through a Generalized Normal distribution (GN). Therefore, it can be used for the sizing of irrigation systems according to a given degree of risk.
id SBEA-1_aa9b495a33e53380e533b276de86c572
oai_identifier_str oai:scielo:S0100-69162017000200257
network_acronym_str SBEA-1
network_name_str Engenharia Agrícola
repository_id_str
spelling ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLINGevapotranspirationprobabilityirrigationABSTRACT This study aimed at testing the fit of continuous probability distributions to a daily reference evapotranspiration dataset (ET0) at a 75% probability level for designing of irrigation systems. Reference evapotranspiration was estimated by the Penman-Monteith method (FAO-56-PM) for eight locations, within the state of Espírito Santo (Brazil), where there are automatic gauge stations. The assessed probability distributions were beta, gamma, generalized extreme value (GEV), generalized logistic (GLO), generalized normal (GN), Gumbel (G), normal (N), Pearson type 3 (P3), Weibull (W), two- and three-parameter lognormal (LN2 and LN3). The fitting of the probability distributions to the ET0 daily dataset was checked by the Kolmogorov-Smirnov's test. Among the studied distributions, GN was the only one to fit the ET0 data for all studied months and locations. We should also infer that continuous probability models have a good fit to the studied ET0 dataset, enabling its estimation at 75% probability through a Generalized Normal distribution (GN). Therefore, it can be used for the sizing of irrigation systems according to a given degree of risk.Associação Brasileira de Engenharia Agrícola2017-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000200257Engenharia Agrícola v.37 n.2 2017reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v37n2p257-267/2017info:eu-repo/semantics/openAccessUliana,Eduardo M.Silva,Demetrius D. daSilva,José G. F. daFraga,Micael de S.Lisboa,Luanaeng2017-04-03T00:00:00Zoai:scielo:S0100-69162017000200257Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2017-04-03T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false
dc.title.none.fl_str_mv ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING
title ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING
spellingShingle ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING
Uliana,Eduardo M.
evapotranspiration
probability
irrigation
title_short ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING
title_full ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING
title_fullStr ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING
title_full_unstemmed ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING
title_sort ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING
author Uliana,Eduardo M.
author_facet Uliana,Eduardo M.
Silva,Demetrius D. da
Silva,José G. F. da
Fraga,Micael de S.
Lisboa,Luana
author_role author
author2 Silva,Demetrius D. da
Silva,José G. F. da
Fraga,Micael de S.
Lisboa,Luana
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Uliana,Eduardo M.
Silva,Demetrius D. da
Silva,José G. F. da
Fraga,Micael de S.
Lisboa,Luana
dc.subject.por.fl_str_mv evapotranspiration
probability
irrigation
topic evapotranspiration
probability
irrigation
description ABSTRACT This study aimed at testing the fit of continuous probability distributions to a daily reference evapotranspiration dataset (ET0) at a 75% probability level for designing of irrigation systems. Reference evapotranspiration was estimated by the Penman-Monteith method (FAO-56-PM) for eight locations, within the state of Espírito Santo (Brazil), where there are automatic gauge stations. The assessed probability distributions were beta, gamma, generalized extreme value (GEV), generalized logistic (GLO), generalized normal (GN), Gumbel (G), normal (N), Pearson type 3 (P3), Weibull (W), two- and three-parameter lognormal (LN2 and LN3). The fitting of the probability distributions to the ET0 daily dataset was checked by the Kolmogorov-Smirnov's test. Among the studied distributions, GN was the only one to fit the ET0 data for all studied months and locations. We should also infer that continuous probability models have a good fit to the studied ET0 dataset, enabling its estimation at 75% probability through a Generalized Normal distribution (GN). Therefore, it can be used for the sizing of irrigation systems according to a given degree of risk.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000200257
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000200257
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1809-4430-eng.agric.v37n2p257-267/2017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
dc.source.none.fl_str_mv Engenharia Agrícola v.37 n.2 2017
reponame:Engenharia Agrícola
instname:Associação Brasileira de Engenharia Agrícola (SBEA)
instacron:SBEA
instname_str Associação Brasileira de Engenharia Agrícola (SBEA)
instacron_str SBEA
institution SBEA
reponame_str Engenharia Agrícola
collection Engenharia Agrícola
repository.name.fl_str_mv Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)
repository.mail.fl_str_mv revistasbea@sbea.org.br||sbea@sbea.org.br
_version_ 1752126273198489600