ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Engenharia Agrícola |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000200257 |
Resumo: | ABSTRACT This study aimed at testing the fit of continuous probability distributions to a daily reference evapotranspiration dataset (ET0) at a 75% probability level for designing of irrigation systems. Reference evapotranspiration was estimated by the Penman-Monteith method (FAO-56-PM) for eight locations, within the state of Espírito Santo (Brazil), where there are automatic gauge stations. The assessed probability distributions were beta, gamma, generalized extreme value (GEV), generalized logistic (GLO), generalized normal (GN), Gumbel (G), normal (N), Pearson type 3 (P3), Weibull (W), two- and three-parameter lognormal (LN2 and LN3). The fitting of the probability distributions to the ET0 daily dataset was checked by the Kolmogorov-Smirnov's test. Among the studied distributions, GN was the only one to fit the ET0 data for all studied months and locations. We should also infer that continuous probability models have a good fit to the studied ET0 dataset, enabling its estimation at 75% probability through a Generalized Normal distribution (GN). Therefore, it can be used for the sizing of irrigation systems according to a given degree of risk. |
id |
SBEA-1_aa9b495a33e53380e533b276de86c572 |
---|---|
oai_identifier_str |
oai:scielo:S0100-69162017000200257 |
network_acronym_str |
SBEA-1 |
network_name_str |
Engenharia Agrícola |
repository_id_str |
|
spelling |
ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLINGevapotranspirationprobabilityirrigationABSTRACT This study aimed at testing the fit of continuous probability distributions to a daily reference evapotranspiration dataset (ET0) at a 75% probability level for designing of irrigation systems. Reference evapotranspiration was estimated by the Penman-Monteith method (FAO-56-PM) for eight locations, within the state of Espírito Santo (Brazil), where there are automatic gauge stations. The assessed probability distributions were beta, gamma, generalized extreme value (GEV), generalized logistic (GLO), generalized normal (GN), Gumbel (G), normal (N), Pearson type 3 (P3), Weibull (W), two- and three-parameter lognormal (LN2 and LN3). The fitting of the probability distributions to the ET0 daily dataset was checked by the Kolmogorov-Smirnov's test. Among the studied distributions, GN was the only one to fit the ET0 data for all studied months and locations. We should also infer that continuous probability models have a good fit to the studied ET0 dataset, enabling its estimation at 75% probability through a Generalized Normal distribution (GN). Therefore, it can be used for the sizing of irrigation systems according to a given degree of risk.Associação Brasileira de Engenharia Agrícola2017-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000200257Engenharia Agrícola v.37 n.2 2017reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v37n2p257-267/2017info:eu-repo/semantics/openAccessUliana,Eduardo M.Silva,Demetrius D. daSilva,José G. F. daFraga,Micael de S.Lisboa,Luanaeng2017-04-03T00:00:00Zoai:scielo:S0100-69162017000200257Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2017-04-03T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false |
dc.title.none.fl_str_mv |
ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING |
title |
ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING |
spellingShingle |
ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING Uliana,Eduardo M. evapotranspiration probability irrigation |
title_short |
ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING |
title_full |
ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING |
title_fullStr |
ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING |
title_full_unstemmed |
ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING |
title_sort |
ESTIMATE OF REFERENCE EVAPOTRANSPIRATION THROUGH CONTINUOUS PROBABILITY MODELLING |
author |
Uliana,Eduardo M. |
author_facet |
Uliana,Eduardo M. Silva,Demetrius D. da Silva,José G. F. da Fraga,Micael de S. Lisboa,Luana |
author_role |
author |
author2 |
Silva,Demetrius D. da Silva,José G. F. da Fraga,Micael de S. Lisboa,Luana |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Uliana,Eduardo M. Silva,Demetrius D. da Silva,José G. F. da Fraga,Micael de S. Lisboa,Luana |
dc.subject.por.fl_str_mv |
evapotranspiration probability irrigation |
topic |
evapotranspiration probability irrigation |
description |
ABSTRACT This study aimed at testing the fit of continuous probability distributions to a daily reference evapotranspiration dataset (ET0) at a 75% probability level for designing of irrigation systems. Reference evapotranspiration was estimated by the Penman-Monteith method (FAO-56-PM) for eight locations, within the state of Espírito Santo (Brazil), where there are automatic gauge stations. The assessed probability distributions were beta, gamma, generalized extreme value (GEV), generalized logistic (GLO), generalized normal (GN), Gumbel (G), normal (N), Pearson type 3 (P3), Weibull (W), two- and three-parameter lognormal (LN2 and LN3). The fitting of the probability distributions to the ET0 daily dataset was checked by the Kolmogorov-Smirnov's test. Among the studied distributions, GN was the only one to fit the ET0 data for all studied months and locations. We should also infer that continuous probability models have a good fit to the studied ET0 dataset, enabling its estimation at 75% probability through a Generalized Normal distribution (GN). Therefore, it can be used for the sizing of irrigation systems according to a given degree of risk. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000200257 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000200257 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1809-4430-eng.agric.v37n2p257-267/2017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
dc.source.none.fl_str_mv |
Engenharia Agrícola v.37 n.2 2017 reponame:Engenharia Agrícola instname:Associação Brasileira de Engenharia Agrícola (SBEA) instacron:SBEA |
instname_str |
Associação Brasileira de Engenharia Agrícola (SBEA) |
instacron_str |
SBEA |
institution |
SBEA |
reponame_str |
Engenharia Agrícola |
collection |
Engenharia Agrícola |
repository.name.fl_str_mv |
Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA) |
repository.mail.fl_str_mv |
revistasbea@sbea.org.br||sbea@sbea.org.br |
_version_ |
1752126273198489600 |