DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Engenharia Agrícola |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000400750 |
Resumo: | ABSTRACT: Due to the difficulty in discriminating soybean and corn in mappings obtained by the time series of satellite images, this study aimed to apply the data mining techniques to separate soybean and corn. Pure pixels selection from Landsat-8 were extracted and used to build a standard spectro-temporal EVI profile for both crops. These profiles were obtained with the Timesat software and, further incorporated in the Weka software. Five out of eleven variables of the standard spectro-temporal EVI profile for each crop were found through the decision tree, a data mining technique. These five variables were sufficient to achieve the separation of soybean and corn crops with an accuracy of 96.3% and a kappa index of 0.92. |
id |
SBEA-1_bf8f898e38ab4d3d03f4244d3e09d5de |
---|---|
oai_identifier_str |
oai:scielo:S0100-69162017000400750 |
network_acronym_str |
SBEA-1 |
network_name_str |
Engenharia Agrícola |
repository_id_str |
|
spelling |
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGEScornEVIJ48soybeanWekaABSTRACT: Due to the difficulty in discriminating soybean and corn in mappings obtained by the time series of satellite images, this study aimed to apply the data mining techniques to separate soybean and corn. Pure pixels selection from Landsat-8 were extracted and used to build a standard spectro-temporal EVI profile for both crops. These profiles were obtained with the Timesat software and, further incorporated in the Weka software. Five out of eleven variables of the standard spectro-temporal EVI profile for each crop were found through the decision tree, a data mining technique. These five variables were sufficient to achieve the separation of soybean and corn crops with an accuracy of 96.3% and a kappa index of 0.92.Associação Brasileira de Engenharia Agrícola2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000400750Engenharia Agrícola v.37 n.4 2017reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v37n4p750-759/2017info:eu-repo/semantics/openAccessBecker,Willyan R.Johann,Jerry A.Richetti,JonathanSilva,Laíza C. DE A.eng2017-10-17T00:00:00Zoai:scielo:S0100-69162017000400750Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2017-10-17T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false |
dc.title.none.fl_str_mv |
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES |
title |
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES |
spellingShingle |
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES Becker,Willyan R. corn EVI J48 soybean Weka |
title_short |
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES |
title_full |
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES |
title_fullStr |
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES |
title_full_unstemmed |
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES |
title_sort |
DATA MINING TECHNIQUES FOR SEPARATION OF SUMMER CROP BASED ON SATELLITE IMAGES |
author |
Becker,Willyan R. |
author_facet |
Becker,Willyan R. Johann,Jerry A. Richetti,Jonathan Silva,Laíza C. DE A. |
author_role |
author |
author2 |
Johann,Jerry A. Richetti,Jonathan Silva,Laíza C. DE A. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Becker,Willyan R. Johann,Jerry A. Richetti,Jonathan Silva,Laíza C. DE A. |
dc.subject.por.fl_str_mv |
corn EVI J48 soybean Weka |
topic |
corn EVI J48 soybean Weka |
description |
ABSTRACT: Due to the difficulty in discriminating soybean and corn in mappings obtained by the time series of satellite images, this study aimed to apply the data mining techniques to separate soybean and corn. Pure pixels selection from Landsat-8 were extracted and used to build a standard spectro-temporal EVI profile for both crops. These profiles were obtained with the Timesat software and, further incorporated in the Weka software. Five out of eleven variables of the standard spectro-temporal EVI profile for each crop were found through the decision tree, a data mining technique. These five variables were sufficient to achieve the separation of soybean and corn crops with an accuracy of 96.3% and a kappa index of 0.92. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000400750 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162017000400750 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1809-4430-eng.agric.v37n4p750-759/2017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
dc.source.none.fl_str_mv |
Engenharia Agrícola v.37 n.4 2017 reponame:Engenharia Agrícola instname:Associação Brasileira de Engenharia Agrícola (SBEA) instacron:SBEA |
instname_str |
Associação Brasileira de Engenharia Agrícola (SBEA) |
instacron_str |
SBEA |
institution |
SBEA |
reponame_str |
Engenharia Agrícola |
collection |
Engenharia Agrícola |
repository.name.fl_str_mv |
Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA) |
repository.mail.fl_str_mv |
revistasbea@sbea.org.br||sbea@sbea.org.br |
_version_ |
1752126273279229952 |