DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPY

Detalhes bibliográficos
Autor(a) principal: Zhang,Xiaodong
Data de Publicação: 2021
Outros Autores: Wang,Pei, Mao,Hanping, Gao,Hongyan, Li,Qinglin
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Engenharia Agrícola
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000600599
Resumo: ABSTRACT Phosphorus deficiency can lead to serious reductions in crop yield and quality. Rapid and accurate determination of phosphorus stress status in vegetables is essential for ensuring the appropriate application of water and fertiliser, improving the yield and quality of vegetables, avoiding the waste of resources and serious non-point pollution source caused by the abuse of chemical fertilisers, and promoting green production and sustainability of facility agriculture. Chemical analysis and spectral or visual imaging methods for detection of phosphorus nutritional status are not conducive in facility production owing to their low accuracy and damage to plants. Owing to its penetration and fingerprint characteristics, terahertz time-domain spectroscopy (THz-TDS) can distinguish differences in internal components caused by excess phosphorus nutrients and changes in nucleic acids, nuclear proteins, phospholipids, and other macromolecules; thus, it could potentially be used to evaluate the nutritional status of crops. In this study, an innovative THz-TDS-based method was used to detect the nutritional status of phosphorus in lettuce. Lettuce was grown with different phosphorus levels using soilless cultivation and different nutrient solutions. Based on the standard formula of Yamasaki nutrient solution, the phosphorus content in the nutrient solutions was reduced or increased by 20%, 60%, 100%, and 150%, and lettuce samples exposed to each of these phosphorus concentrations were collected. Terahertz spectra are highly sensitive to water; thus, the lettuce samples were freeze-dried to minimise the effect of water and maintain their original quality and bioactivity. The spectra of lettuce were recorded using a TS7400 THz-TDS system; noise and interference were eliminated via normalisation based on Savitzky-Golay smoothing. The correction and validation sets were divided using sample set partitioning based on the joint x-y distance (SPXY). The stability competitive adaptive reweighted algorithm, iterative retention information variable algorithm, and interval combination optimisation algorithm were used to select the terahertz characteristic wavelength, and the successive projection algorithm was then used for secondary optimisation. Finally, a THz-TDS model of lettuce phosphorus was established using the partial least squares method with five principal component variables. The coefficient of determination of the model reached 0.7005, and the root-mean-square error of the predictions was 0.003273, indicating that this method has a high prediction accuracy.
id SBEA-1_cbb1e80f73d915264fb07d8d75aca30d
oai_identifier_str oai:scielo:S0100-69162021000600599
network_acronym_str SBEA-1
network_name_str Engenharia Agrícola
repository_id_str
spelling DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPYlettuceterahertz time-domain spectrumsuccessive projection algorithmprincipal component analysispartial least squares methodABSTRACT Phosphorus deficiency can lead to serious reductions in crop yield and quality. Rapid and accurate determination of phosphorus stress status in vegetables is essential for ensuring the appropriate application of water and fertiliser, improving the yield and quality of vegetables, avoiding the waste of resources and serious non-point pollution source caused by the abuse of chemical fertilisers, and promoting green production and sustainability of facility agriculture. Chemical analysis and spectral or visual imaging methods for detection of phosphorus nutritional status are not conducive in facility production owing to their low accuracy and damage to plants. Owing to its penetration and fingerprint characteristics, terahertz time-domain spectroscopy (THz-TDS) can distinguish differences in internal components caused by excess phosphorus nutrients and changes in nucleic acids, nuclear proteins, phospholipids, and other macromolecules; thus, it could potentially be used to evaluate the nutritional status of crops. In this study, an innovative THz-TDS-based method was used to detect the nutritional status of phosphorus in lettuce. Lettuce was grown with different phosphorus levels using soilless cultivation and different nutrient solutions. Based on the standard formula of Yamasaki nutrient solution, the phosphorus content in the nutrient solutions was reduced or increased by 20%, 60%, 100%, and 150%, and lettuce samples exposed to each of these phosphorus concentrations were collected. Terahertz spectra are highly sensitive to water; thus, the lettuce samples were freeze-dried to minimise the effect of water and maintain their original quality and bioactivity. The spectra of lettuce were recorded using a TS7400 THz-TDS system; noise and interference were eliminated via normalisation based on Savitzky-Golay smoothing. The correction and validation sets were divided using sample set partitioning based on the joint x-y distance (SPXY). The stability competitive adaptive reweighted algorithm, iterative retention information variable algorithm, and interval combination optimisation algorithm were used to select the terahertz characteristic wavelength, and the successive projection algorithm was then used for secondary optimisation. Finally, a THz-TDS model of lettuce phosphorus was established using the partial least squares method with five principal component variables. The coefficient of determination of the model reached 0.7005, and the root-mean-square error of the predictions was 0.003273, indicating that this method has a high prediction accuracy.Associação Brasileira de Engenharia Agrícola2021-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000600599Engenharia Agrícola v.41 n.6 2021reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v41n6p599-608/2021info:eu-repo/semantics/openAccessZhang,XiaodongWang,PeiMao,HanpingGao,HongyanLi,Qinglineng2021-12-15T00:00:00Zoai:scielo:S0100-69162021000600599Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2021-12-15T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false
dc.title.none.fl_str_mv DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPY
title DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPY
spellingShingle DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPY
Zhang,Xiaodong
lettuce
terahertz time-domain spectrum
successive projection algorithm
principal component analysis
partial least squares method
title_short DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPY
title_full DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPY
title_fullStr DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPY
title_full_unstemmed DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPY
title_sort DETECTION OF THE NUTRITIONAL STATUS OF PHOSPHORUS IN LETTUCE USING THZ TIME-DOMAIN SPECTROSCOPY
author Zhang,Xiaodong
author_facet Zhang,Xiaodong
Wang,Pei
Mao,Hanping
Gao,Hongyan
Li,Qinglin
author_role author
author2 Wang,Pei
Mao,Hanping
Gao,Hongyan
Li,Qinglin
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Zhang,Xiaodong
Wang,Pei
Mao,Hanping
Gao,Hongyan
Li,Qinglin
dc.subject.por.fl_str_mv lettuce
terahertz time-domain spectrum
successive projection algorithm
principal component analysis
partial least squares method
topic lettuce
terahertz time-domain spectrum
successive projection algorithm
principal component analysis
partial least squares method
description ABSTRACT Phosphorus deficiency can lead to serious reductions in crop yield and quality. Rapid and accurate determination of phosphorus stress status in vegetables is essential for ensuring the appropriate application of water and fertiliser, improving the yield and quality of vegetables, avoiding the waste of resources and serious non-point pollution source caused by the abuse of chemical fertilisers, and promoting green production and sustainability of facility agriculture. Chemical analysis and spectral or visual imaging methods for detection of phosphorus nutritional status are not conducive in facility production owing to their low accuracy and damage to plants. Owing to its penetration and fingerprint characteristics, terahertz time-domain spectroscopy (THz-TDS) can distinguish differences in internal components caused by excess phosphorus nutrients and changes in nucleic acids, nuclear proteins, phospholipids, and other macromolecules; thus, it could potentially be used to evaluate the nutritional status of crops. In this study, an innovative THz-TDS-based method was used to detect the nutritional status of phosphorus in lettuce. Lettuce was grown with different phosphorus levels using soilless cultivation and different nutrient solutions. Based on the standard formula of Yamasaki nutrient solution, the phosphorus content in the nutrient solutions was reduced or increased by 20%, 60%, 100%, and 150%, and lettuce samples exposed to each of these phosphorus concentrations were collected. Terahertz spectra are highly sensitive to water; thus, the lettuce samples were freeze-dried to minimise the effect of water and maintain their original quality and bioactivity. The spectra of lettuce were recorded using a TS7400 THz-TDS system; noise and interference were eliminated via normalisation based on Savitzky-Golay smoothing. The correction and validation sets were divided using sample set partitioning based on the joint x-y distance (SPXY). The stability competitive adaptive reweighted algorithm, iterative retention information variable algorithm, and interval combination optimisation algorithm were used to select the terahertz characteristic wavelength, and the successive projection algorithm was then used for secondary optimisation. Finally, a THz-TDS model of lettuce phosphorus was established using the partial least squares method with five principal component variables. The coefficient of determination of the model reached 0.7005, and the root-mean-square error of the predictions was 0.003273, indicating that this method has a high prediction accuracy.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000600599
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000600599
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1809-4430-eng.agric.v41n6p599-608/2021
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
dc.source.none.fl_str_mv Engenharia Agrícola v.41 n.6 2021
reponame:Engenharia Agrícola
instname:Associação Brasileira de Engenharia Agrícola (SBEA)
instacron:SBEA
instname_str Associação Brasileira de Engenharia Agrícola (SBEA)
instacron_str SBEA
institution SBEA
reponame_str Engenharia Agrícola
collection Engenharia Agrícola
repository.name.fl_str_mv Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)
repository.mail.fl_str_mv revistasbea@sbea.org.br||sbea@sbea.org.br
_version_ 1752126275276767232