A self-organizing maps classifier structure for brain computer interfaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research on Biomedical Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000300232 |
Resumo: | AbstractIntroductionBrain Computer Interfaces provide an alternative communication path to severe paralyzed people and uses electrical signals related to brain activity in order to identify the user’s intention. In this paper a classifier based on a Self-Organizing Map is introduced.MethodsElectroencephalography signal is used on this work as a source for the user’s intention. This signal represents the brain activity and is processed in order to extract the frequency features presented to the classifier, which uses a Self-Organizing Map and a series of probability masks in order to identify the correct class.ResultsThe proposed structure was evaluated using a dataset of Electroencephalography with three mental tasks. The system was able to identify the different states of the users intention with an accuracy of 71.21% for a three-class problem using only 25 neurons for one of the users.ConclusionThe classifier proposed in this paper has an accuracy that is around the value of similar works in the literature, using the same data, but using a small time window for the classification, meaning the system can have a better time response for the user. |
id |
SBEB-1_3b62b4190184efc48ad772c13ab79cb9 |
---|---|
oai_identifier_str |
oai:scielo:S2446-47402015000300232 |
network_acronym_str |
SBEB-1 |
network_name_str |
Research on Biomedical Engineering (Online) |
repository_id_str |
|
spelling |
A self-organizing maps classifier structure for brain computer interfacesSelf-organizing mapBrain-Computer interfaceBCISOMAbstractIntroductionBrain Computer Interfaces provide an alternative communication path to severe paralyzed people and uses electrical signals related to brain activity in order to identify the user’s intention. In this paper a classifier based on a Self-Organizing Map is introduced.MethodsElectroencephalography signal is used on this work as a source for the user’s intention. This signal represents the brain activity and is processed in order to extract the frequency features presented to the classifier, which uses a Self-Organizing Map and a series of probability masks in order to identify the correct class.ResultsThe proposed structure was evaluated using a dataset of Electroencephalography with three mental tasks. The system was able to identify the different states of the users intention with an accuracy of 71.21% for a three-class problem using only 25 neurons for one of the users.ConclusionThe classifier proposed in this paper has an accuracy that is around the value of similar works in the literature, using the same data, but using a small time window for the classification, meaning the system can have a better time response for the user.Sociedade Brasileira de Engenharia Biomédica2015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000300232Research on Biomedical Engineering v.31 n.3 2015reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.0753info:eu-repo/semantics/openAccessBueno,LeandroBastos Filho,Teodiano Freireeng2015-10-20T00:00:00Zoai:scielo:S2446-47402015000300232Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2015-10-20T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false |
dc.title.none.fl_str_mv |
A self-organizing maps classifier structure for brain computer interfaces |
title |
A self-organizing maps classifier structure for brain computer interfaces |
spellingShingle |
A self-organizing maps classifier structure for brain computer interfaces Bueno,Leandro Self-organizing map Brain-Computer interface BCI SOM |
title_short |
A self-organizing maps classifier structure for brain computer interfaces |
title_full |
A self-organizing maps classifier structure for brain computer interfaces |
title_fullStr |
A self-organizing maps classifier structure for brain computer interfaces |
title_full_unstemmed |
A self-organizing maps classifier structure for brain computer interfaces |
title_sort |
A self-organizing maps classifier structure for brain computer interfaces |
author |
Bueno,Leandro |
author_facet |
Bueno,Leandro Bastos Filho,Teodiano Freire |
author_role |
author |
author2 |
Bastos Filho,Teodiano Freire |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bueno,Leandro Bastos Filho,Teodiano Freire |
dc.subject.por.fl_str_mv |
Self-organizing map Brain-Computer interface BCI SOM |
topic |
Self-organizing map Brain-Computer interface BCI SOM |
description |
AbstractIntroductionBrain Computer Interfaces provide an alternative communication path to severe paralyzed people and uses electrical signals related to brain activity in order to identify the user’s intention. In this paper a classifier based on a Self-Organizing Map is introduced.MethodsElectroencephalography signal is used on this work as a source for the user’s intention. This signal represents the brain activity and is processed in order to extract the frequency features presented to the classifier, which uses a Self-Organizing Map and a series of probability masks in order to identify the correct class.ResultsThe proposed structure was evaluated using a dataset of Electroencephalography with three mental tasks. The system was able to identify the different states of the users intention with an accuracy of 71.21% for a three-class problem using only 25 neurons for one of the users.ConclusionThe classifier proposed in this paper has an accuracy that is around the value of similar works in the literature, using the same data, but using a small time window for the classification, meaning the system can have a better time response for the user. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000300232 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000300232 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2446-4740.0753 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
dc.source.none.fl_str_mv |
Research on Biomedical Engineering v.31 n.3 2015 reponame:Research on Biomedical Engineering (Online) instname:Sociedade Brasileira de Engenharia Biomédica (SBEB) instacron:SBEB |
instname_str |
Sociedade Brasileira de Engenharia Biomédica (SBEB) |
instacron_str |
SBEB |
institution |
SBEB |
reponame_str |
Research on Biomedical Engineering (Online) |
collection |
Research on Biomedical Engineering (Online) |
repository.name.fl_str_mv |
Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB) |
repository.mail.fl_str_mv |
||rbe@rbejournal.org |
_version_ |
1752126288200466432 |