Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research on Biomedical Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300185 |
Resumo: | Abstract Introduction The interpretation of brain tumors and abscesses MR spectra is complex and subjective. In clinical practice, different experimental conditions such as field strength or echo time (TE) reveal different metabolite information. Our study aims to show in which scenarios magnetic resonance spectroscopy can differentiate among brain tumors, normal tissue and abscesses using classification algorithms. Methods Pairwise classification between abscesses, brain tumor classes, and healthy subjects tissue spectra was performed, also the multiclass classification between meningiomas, grade I-II-III gliomas, and glioblastomas and metastases, in 1.5T short TE (n = 195), 1.5T long TE (n = 231) and 3.0T long TE (n = 59) point resolved spectroscopy setups, using LCModel metabolite concentration as input to classifiers. Results Areas under the curve of the Receiver Operating Characteristic above 0.9 were obtained for the classification between abscesses and all classes except glioblastomas, reaching 0.947 when classifying against metastases, grade I-II gliomas and glioblastomas (0.980), meningiomas and glioblastomas (0.956), grade I-II gliomas and metastases (0.989), meningiomas and metastases (0.990), and between healthy tissue and all other classes in both conditions except for anaplastic astrocytomas in short TE 1.5T setup. When the multiclass classification agrees with radiological diagnosis the accuracy reaches 96.8% for short TE and 98.9% for long TE. Conclusions The results in the three conditions were similar, highlighting comparable quality, robust quantification and good regularization and flexibility in either algorithm. Multiclass classification provides useful information to the radiologist. These findings show the potential of the development of decision support systems as well as tools for the accompaniment of treatments. |
id |
SBEB-1_794a231a1f708f9e9cc5975321e36cf9 |
---|---|
oai_identifier_str |
oai:scielo:S2446-47402017000300185 |
network_acronym_str |
SBEB-1 |
network_name_str |
Research on Biomedical Engineering (Online) |
repository_id_str |
|
spelling |
Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findingsAbscessesBrainMagnetic resonance spectroscopyPattern recognitionTumorsAbstract Introduction The interpretation of brain tumors and abscesses MR spectra is complex and subjective. In clinical practice, different experimental conditions such as field strength or echo time (TE) reveal different metabolite information. Our study aims to show in which scenarios magnetic resonance spectroscopy can differentiate among brain tumors, normal tissue and abscesses using classification algorithms. Methods Pairwise classification between abscesses, brain tumor classes, and healthy subjects tissue spectra was performed, also the multiclass classification between meningiomas, grade I-II-III gliomas, and glioblastomas and metastases, in 1.5T short TE (n = 195), 1.5T long TE (n = 231) and 3.0T long TE (n = 59) point resolved spectroscopy setups, using LCModel metabolite concentration as input to classifiers. Results Areas under the curve of the Receiver Operating Characteristic above 0.9 were obtained for the classification between abscesses and all classes except glioblastomas, reaching 0.947 when classifying against metastases, grade I-II gliomas and glioblastomas (0.980), meningiomas and glioblastomas (0.956), grade I-II gliomas and metastases (0.989), meningiomas and metastases (0.990), and between healthy tissue and all other classes in both conditions except for anaplastic astrocytomas in short TE 1.5T setup. When the multiclass classification agrees with radiological diagnosis the accuracy reaches 96.8% for short TE and 98.9% for long TE. Conclusions The results in the three conditions were similar, highlighting comparable quality, robust quantification and good regularization and flexibility in either algorithm. Multiclass classification provides useful information to the radiologist. These findings show the potential of the development of decision support systems as well as tools for the accompaniment of treatments.Sociedade Brasileira de Engenharia Biomédica2017-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300185Research on Biomedical Engineering v.33 n.3 2017reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.00617info:eu-repo/semantics/openAccessVieira,Bruno HeblingSantos,Antonio Carlos dosSalmon,Carlos Ernesto Garridoeng2018-08-02T00:00:00Zoai:scielo:S2446-47402017000300185Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2018-08-02T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false |
dc.title.none.fl_str_mv |
Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings |
title |
Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings |
spellingShingle |
Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings Vieira,Bruno Hebling Abscesses Brain Magnetic resonance spectroscopy Pattern recognition Tumors |
title_short |
Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings |
title_full |
Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings |
title_fullStr |
Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings |
title_full_unstemmed |
Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings |
title_sort |
Pattern recognition of abscesses and brain tumors through MR spectroscopy: Comparison of experimental conditions and radiological findings |
author |
Vieira,Bruno Hebling |
author_facet |
Vieira,Bruno Hebling Santos,Antonio Carlos dos Salmon,Carlos Ernesto Garrido |
author_role |
author |
author2 |
Santos,Antonio Carlos dos Salmon,Carlos Ernesto Garrido |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Vieira,Bruno Hebling Santos,Antonio Carlos dos Salmon,Carlos Ernesto Garrido |
dc.subject.por.fl_str_mv |
Abscesses Brain Magnetic resonance spectroscopy Pattern recognition Tumors |
topic |
Abscesses Brain Magnetic resonance spectroscopy Pattern recognition Tumors |
description |
Abstract Introduction The interpretation of brain tumors and abscesses MR spectra is complex and subjective. In clinical practice, different experimental conditions such as field strength or echo time (TE) reveal different metabolite information. Our study aims to show in which scenarios magnetic resonance spectroscopy can differentiate among brain tumors, normal tissue and abscesses using classification algorithms. Methods Pairwise classification between abscesses, brain tumor classes, and healthy subjects tissue spectra was performed, also the multiclass classification between meningiomas, grade I-II-III gliomas, and glioblastomas and metastases, in 1.5T short TE (n = 195), 1.5T long TE (n = 231) and 3.0T long TE (n = 59) point resolved spectroscopy setups, using LCModel metabolite concentration as input to classifiers. Results Areas under the curve of the Receiver Operating Characteristic above 0.9 were obtained for the classification between abscesses and all classes except glioblastomas, reaching 0.947 when classifying against metastases, grade I-II gliomas and glioblastomas (0.980), meningiomas and glioblastomas (0.956), grade I-II gliomas and metastases (0.989), meningiomas and metastases (0.990), and between healthy tissue and all other classes in both conditions except for anaplastic astrocytomas in short TE 1.5T setup. When the multiclass classification agrees with radiological diagnosis the accuracy reaches 96.8% for short TE and 98.9% for long TE. Conclusions The results in the three conditions were similar, highlighting comparable quality, robust quantification and good regularization and flexibility in either algorithm. Multiclass classification provides useful information to the radiologist. These findings show the potential of the development of decision support systems as well as tools for the accompaniment of treatments. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300185 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300185 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2446-4740.00617 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
dc.source.none.fl_str_mv |
Research on Biomedical Engineering v.33 n.3 2017 reponame:Research on Biomedical Engineering (Online) instname:Sociedade Brasileira de Engenharia Biomédica (SBEB) instacron:SBEB |
instname_str |
Sociedade Brasileira de Engenharia Biomédica (SBEB) |
instacron_str |
SBEB |
institution |
SBEB |
reponame_str |
Research on Biomedical Engineering (Online) |
collection |
Research on Biomedical Engineering (Online) |
repository.name.fl_str_mv |
Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB) |
repository.mail.fl_str_mv |
||rbe@rbejournal.org |
_version_ |
1752126288742580224 |