A wavelet-based method for power-line interference removal in ECG signals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research on Biomedical Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402018000100073 |
Resumo: | Abstract Introduction The analysis of electrocardiogram (ECG) signals allows the experts to diagnosis several cardiac disorders. However, the accuracy of such diagnostic depends on the signals quality. In this paper it is proposed a simple method for power-line interference (PLI) removal based on the wavelet decomposition, without the use of thresholding techniques. Methods This method consists in identifying the ECG and noise frequency range for further zeroing wavelet detail coefficients in the subbands with no ECG coefficients in the frequency content. Afterward, the enhanced ECG signal is obtained by the inverse discrete wavelet transform (IDWT). In order to choose the wavelet function, several experiments were performed with synthetic signals with worse Signal-to-Noise Ratio (SNR). Results Considering the relative error metrics and runtime, the best wavelet function for denoising was Symlet 8. Twenty synthetic ECG signals with different features and eight real ECG signals, obtained in the Physionet Challenge 2011, were used in the experiments. Results show the advantage of the proposed method against thresholding and notch filter techniques, considering classical metrics of assessment. The proposed method performed better for 75% of the synthetic signals and for 100% of the real signals considering most of the evaluation measures, when compared with a thresholding technique. In comparison with the notch filter, the proposed method is better for all signals. Conclusion The proposed method can be used for PLI removal in ECG signals with superior performance than thresholding and notch filter techniques. Also, it can be applied for high frequencies denoising even without a priori frequencies knowledge. |
id |
SBEB-1_8403f09b7e97aaae57aeb5a28a28d59b |
---|---|
oai_identifier_str |
oai:scielo:S2446-47402018000100073 |
network_acronym_str |
SBEB-1 |
network_name_str |
Research on Biomedical Engineering (Online) |
repository_id_str |
|
spelling |
A wavelet-based method for power-line interference removal in ECG signalsPower-line interferenceDenoising ECG signalsWavelet decompositionAbstract Introduction The analysis of electrocardiogram (ECG) signals allows the experts to diagnosis several cardiac disorders. However, the accuracy of such diagnostic depends on the signals quality. In this paper it is proposed a simple method for power-line interference (PLI) removal based on the wavelet decomposition, without the use of thresholding techniques. Methods This method consists in identifying the ECG and noise frequency range for further zeroing wavelet detail coefficients in the subbands with no ECG coefficients in the frequency content. Afterward, the enhanced ECG signal is obtained by the inverse discrete wavelet transform (IDWT). In order to choose the wavelet function, several experiments were performed with synthetic signals with worse Signal-to-Noise Ratio (SNR). Results Considering the relative error metrics and runtime, the best wavelet function for denoising was Symlet 8. Twenty synthetic ECG signals with different features and eight real ECG signals, obtained in the Physionet Challenge 2011, were used in the experiments. Results show the advantage of the proposed method against thresholding and notch filter techniques, considering classical metrics of assessment. The proposed method performed better for 75% of the synthetic signals and for 100% of the real signals considering most of the evaluation measures, when compared with a thresholding technique. In comparison with the notch filter, the proposed method is better for all signals. Conclusion The proposed method can be used for PLI removal in ECG signals with superior performance than thresholding and notch filter techniques. Also, it can be applied for high frequencies denoising even without a priori frequencies knowledge.Sociedade Brasileira de Engenharia Biomédica2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402018000100073Research on Biomedical Engineering v.34 n.1 2018reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.01817info:eu-repo/semantics/openAccessOliveira,Bruno Rodrigues deDuarte,Marco Aparecido QueirozAbreu,Caio Cesar Enside deVieira Filho,Jozueeng2018-04-18T00:00:00Zoai:scielo:S2446-47402018000100073Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2018-04-18T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false |
dc.title.none.fl_str_mv |
A wavelet-based method for power-line interference removal in ECG signals |
title |
A wavelet-based method for power-line interference removal in ECG signals |
spellingShingle |
A wavelet-based method for power-line interference removal in ECG signals Oliveira,Bruno Rodrigues de Power-line interference Denoising ECG signals Wavelet decomposition |
title_short |
A wavelet-based method for power-line interference removal in ECG signals |
title_full |
A wavelet-based method for power-line interference removal in ECG signals |
title_fullStr |
A wavelet-based method for power-line interference removal in ECG signals |
title_full_unstemmed |
A wavelet-based method for power-line interference removal in ECG signals |
title_sort |
A wavelet-based method for power-line interference removal in ECG signals |
author |
Oliveira,Bruno Rodrigues de |
author_facet |
Oliveira,Bruno Rodrigues de Duarte,Marco Aparecido Queiroz Abreu,Caio Cesar Enside de Vieira Filho,Jozue |
author_role |
author |
author2 |
Duarte,Marco Aparecido Queiroz Abreu,Caio Cesar Enside de Vieira Filho,Jozue |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Oliveira,Bruno Rodrigues de Duarte,Marco Aparecido Queiroz Abreu,Caio Cesar Enside de Vieira Filho,Jozue |
dc.subject.por.fl_str_mv |
Power-line interference Denoising ECG signals Wavelet decomposition |
topic |
Power-line interference Denoising ECG signals Wavelet decomposition |
description |
Abstract Introduction The analysis of electrocardiogram (ECG) signals allows the experts to diagnosis several cardiac disorders. However, the accuracy of such diagnostic depends on the signals quality. In this paper it is proposed a simple method for power-line interference (PLI) removal based on the wavelet decomposition, without the use of thresholding techniques. Methods This method consists in identifying the ECG and noise frequency range for further zeroing wavelet detail coefficients in the subbands with no ECG coefficients in the frequency content. Afterward, the enhanced ECG signal is obtained by the inverse discrete wavelet transform (IDWT). In order to choose the wavelet function, several experiments were performed with synthetic signals with worse Signal-to-Noise Ratio (SNR). Results Considering the relative error metrics and runtime, the best wavelet function for denoising was Symlet 8. Twenty synthetic ECG signals with different features and eight real ECG signals, obtained in the Physionet Challenge 2011, were used in the experiments. Results show the advantage of the proposed method against thresholding and notch filter techniques, considering classical metrics of assessment. The proposed method performed better for 75% of the synthetic signals and for 100% of the real signals considering most of the evaluation measures, when compared with a thresholding technique. In comparison with the notch filter, the proposed method is better for all signals. Conclusion The proposed method can be used for PLI removal in ECG signals with superior performance than thresholding and notch filter techniques. Also, it can be applied for high frequencies denoising even without a priori frequencies knowledge. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402018000100073 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402018000100073 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2446-4740.01817 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
dc.source.none.fl_str_mv |
Research on Biomedical Engineering v.34 n.1 2018 reponame:Research on Biomedical Engineering (Online) instname:Sociedade Brasileira de Engenharia Biomédica (SBEB) instacron:SBEB |
instname_str |
Sociedade Brasileira de Engenharia Biomédica (SBEB) |
instacron_str |
SBEB |
institution |
SBEB |
reponame_str |
Research on Biomedical Engineering (Online) |
collection |
Research on Biomedical Engineering (Online) |
repository.name.fl_str_mv |
Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB) |
repository.mail.fl_str_mv |
||rbe@rbejournal.org |
_version_ |
1752126288786620416 |