Automatic identification of tuberculosis mycobacterium
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research on Biomedical Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000100033 |
Resumo: | Introduction According to the Global TB control report of 2013, “Tuberculosis (TB) remains a major global health problem. In 2012, an estimated 8.6 million people developed TB and 1.3 million died from the disease. Two main sputum smear microscopy techniques are used for TB diagnosis: Fluorescence microscopy and conventional microscopy. Fluorescence microscopy is a more expensive diagnostic method because of the high costs of the microscopy unit and its maintenance. Therefore, conventional microscopy is more appropriate for use in developing countries. Methods This paper presents a new method for detecting tuberculosis bacillus in conventional sputum smear microscopy. The method consists of two main steps, bacillus segmentation and post-processing. In the first step, the scalar selection technique was used to select input variables for the segmentation classifiers from four color spaces. Thirty features were used, including the subtractions of the color components of different color spaces. In the post-processing step, three filters were used to separate bacilli from artifact: a size filter, a geometric filter and a Rule-based filter that uses the components of the RGB color space. Results In bacillus identification, an overall sensitivity of 96.80% and an error rate of 3.38% were obtained. An image database with 120-sputum-smear microscopy slices of 12 patients with objects marked as bacillus, agglomerated bacillus and artifact was generated and is now available online. Conclusions The best results were obtained with a support vector machine in bacillus segmentation associated with the application of the three post-processing filters. |
id |
SBEB-1_d0cd43e3ed270f5ae0d15b9a9943c1f6 |
---|---|
oai_identifier_str |
oai:scielo:S2446-47402015000100033 |
network_acronym_str |
SBEB-1 |
network_name_str |
Research on Biomedical Engineering (Online) |
repository_id_str |
|
spelling |
Automatic identification of tuberculosis mycobacteriumTuberculosisAutomatic bacillus identificationNeural networkSupport vector machine Introduction According to the Global TB control report of 2013, “Tuberculosis (TB) remains a major global health problem. In 2012, an estimated 8.6 million people developed TB and 1.3 million died from the disease. Two main sputum smear microscopy techniques are used for TB diagnosis: Fluorescence microscopy and conventional microscopy. Fluorescence microscopy is a more expensive diagnostic method because of the high costs of the microscopy unit and its maintenance. Therefore, conventional microscopy is more appropriate for use in developing countries. Methods This paper presents a new method for detecting tuberculosis bacillus in conventional sputum smear microscopy. The method consists of two main steps, bacillus segmentation and post-processing. In the first step, the scalar selection technique was used to select input variables for the segmentation classifiers from four color spaces. Thirty features were used, including the subtractions of the color components of different color spaces. In the post-processing step, three filters were used to separate bacilli from artifact: a size filter, a geometric filter and a Rule-based filter that uses the components of the RGB color space. Results In bacillus identification, an overall sensitivity of 96.80% and an error rate of 3.38% were obtained. An image database with 120-sputum-smear microscopy slices of 12 patients with objects marked as bacillus, agglomerated bacillus and artifact was generated and is now available online. Conclusions The best results were obtained with a support vector machine in bacillus segmentation associated with the application of the three post-processing filters. Sociedade Brasileira de Engenharia Biomédica2015-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000100033Research on Biomedical Engineering v.31 n.1 2015reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.0524info:eu-repo/semantics/openAccessCosta Filho,Cicero Ferreira FernandesLevy,Pamela CamposXavier,Clahildek de MatosFujimoto,Luciana Botinelly MendonçaCosta,Marly Guimarães Fernandeseng2015-05-12T00:00:00Zoai:scielo:S2446-47402015000100033Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2015-05-12T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false |
dc.title.none.fl_str_mv |
Automatic identification of tuberculosis mycobacterium |
title |
Automatic identification of tuberculosis mycobacterium |
spellingShingle |
Automatic identification of tuberculosis mycobacterium Costa Filho,Cicero Ferreira Fernandes Tuberculosis Automatic bacillus identification Neural network Support vector machine |
title_short |
Automatic identification of tuberculosis mycobacterium |
title_full |
Automatic identification of tuberculosis mycobacterium |
title_fullStr |
Automatic identification of tuberculosis mycobacterium |
title_full_unstemmed |
Automatic identification of tuberculosis mycobacterium |
title_sort |
Automatic identification of tuberculosis mycobacterium |
author |
Costa Filho,Cicero Ferreira Fernandes |
author_facet |
Costa Filho,Cicero Ferreira Fernandes Levy,Pamela Campos Xavier,Clahildek de Matos Fujimoto,Luciana Botinelly Mendonça Costa,Marly Guimarães Fernandes |
author_role |
author |
author2 |
Levy,Pamela Campos Xavier,Clahildek de Matos Fujimoto,Luciana Botinelly Mendonça Costa,Marly Guimarães Fernandes |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Costa Filho,Cicero Ferreira Fernandes Levy,Pamela Campos Xavier,Clahildek de Matos Fujimoto,Luciana Botinelly Mendonça Costa,Marly Guimarães Fernandes |
dc.subject.por.fl_str_mv |
Tuberculosis Automatic bacillus identification Neural network Support vector machine |
topic |
Tuberculosis Automatic bacillus identification Neural network Support vector machine |
description |
Introduction According to the Global TB control report of 2013, “Tuberculosis (TB) remains a major global health problem. In 2012, an estimated 8.6 million people developed TB and 1.3 million died from the disease. Two main sputum smear microscopy techniques are used for TB diagnosis: Fluorescence microscopy and conventional microscopy. Fluorescence microscopy is a more expensive diagnostic method because of the high costs of the microscopy unit and its maintenance. Therefore, conventional microscopy is more appropriate for use in developing countries. Methods This paper presents a new method for detecting tuberculosis bacillus in conventional sputum smear microscopy. The method consists of two main steps, bacillus segmentation and post-processing. In the first step, the scalar selection technique was used to select input variables for the segmentation classifiers from four color spaces. Thirty features were used, including the subtractions of the color components of different color spaces. In the post-processing step, three filters were used to separate bacilli from artifact: a size filter, a geometric filter and a Rule-based filter that uses the components of the RGB color space. Results In bacillus identification, an overall sensitivity of 96.80% and an error rate of 3.38% were obtained. An image database with 120-sputum-smear microscopy slices of 12 patients with objects marked as bacillus, agglomerated bacillus and artifact was generated and is now available online. Conclusions The best results were obtained with a support vector machine in bacillus segmentation associated with the application of the three post-processing filters. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000100033 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000100033 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2446-4740.0524 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
dc.source.none.fl_str_mv |
Research on Biomedical Engineering v.31 n.1 2015 reponame:Research on Biomedical Engineering (Online) instname:Sociedade Brasileira de Engenharia Biomédica (SBEB) instacron:SBEB |
instname_str |
Sociedade Brasileira de Engenharia Biomédica (SBEB) |
instacron_str |
SBEB |
institution |
SBEB |
reponame_str |
Research on Biomedical Engineering (Online) |
collection |
Research on Biomedical Engineering (Online) |
repository.name.fl_str_mv |
Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB) |
repository.mail.fl_str_mv |
||rbe@rbejournal.org |
_version_ |
1752126288157474816 |