Drowsiness detection for single channel EEG by DWT best m-term approximation

Detalhes bibliográficos
Autor(a) principal: Silveira,Tiago da
Data de Publicação: 2015
Outros Autores: Kozakevicius,Alice de Jesus, Rodrigues,Cesar Ramos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research on Biomedical Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000200107
Resumo: Introduction In this paper we propose a promising new technique for drowsiness detection. It consists of applying the best m-term approximation on a single-channel electroencephalography (EEG) signal preprocessed through a discrete wavelet transform. Methods In order to classify EEG epochs as awake or drowsy states, the most significant m terms from the wavelet expansion of an EEG signal are selected according to the magnitude of their coefficients related to the alpha and beta rhythms. Results By using a simple thresholding strategy it provides hit rates comparable to those using more complex techniques. It was tested on a set of 6 hours and 50 minutes EEG drowsiness signals from PhysioNet Sleep Database yielding an overall sensitivity (TPR) of 84.98% and 98.65% of precision (PPV). Conclusion The method has proved itself efficient at separating data from different brain rhythms, thus alleviating the requirement for complex post-processing classification algorithms.
id SBEB-1_feafc2a752810e6136184adacc2e0e02
oai_identifier_str oai:scielo:S2446-47402015000200107
network_acronym_str SBEB-1
network_name_str Research on Biomedical Engineering (Online)
repository_id_str
spelling Drowsiness detection for single channel EEG by DWT best m-term approximationSignal processingDrowsiness detectionWavelet transformBest m-term approximationFrequency bandsDB2 Wavelet Introduction In this paper we propose a promising new technique for drowsiness detection. It consists of applying the best m-term approximation on a single-channel electroencephalography (EEG) signal preprocessed through a discrete wavelet transform. Methods In order to classify EEG epochs as awake or drowsy states, the most significant m terms from the wavelet expansion of an EEG signal are selected according to the magnitude of their coefficients related to the alpha and beta rhythms. Results By using a simple thresholding strategy it provides hit rates comparable to those using more complex techniques. It was tested on a set of 6 hours and 50 minutes EEG drowsiness signals from PhysioNet Sleep Database yielding an overall sensitivity (TPR) of 84.98% and 98.65% of precision (PPV). Conclusion The method has proved itself efficient at separating data from different brain rhythms, thus alleviating the requirement for complex post-processing classification algorithms. Sociedade Brasileira de Engenharia Biomédica2015-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000200107Research on Biomedical Engineering v.31 n.2 2015reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.0693info:eu-repo/semantics/openAccessSilveira,Tiago daKozakevicius,Alice de JesusRodrigues,Cesar Ramoseng2015-07-23T00:00:00Zoai:scielo:S2446-47402015000200107Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2015-07-23T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false
dc.title.none.fl_str_mv Drowsiness detection for single channel EEG by DWT best m-term approximation
title Drowsiness detection for single channel EEG by DWT best m-term approximation
spellingShingle Drowsiness detection for single channel EEG by DWT best m-term approximation
Silveira,Tiago da
Signal processing
Drowsiness detection
Wavelet transform
Best m-term approximation
Frequency bands
DB2 Wavelet
title_short Drowsiness detection for single channel EEG by DWT best m-term approximation
title_full Drowsiness detection for single channel EEG by DWT best m-term approximation
title_fullStr Drowsiness detection for single channel EEG by DWT best m-term approximation
title_full_unstemmed Drowsiness detection for single channel EEG by DWT best m-term approximation
title_sort Drowsiness detection for single channel EEG by DWT best m-term approximation
author Silveira,Tiago da
author_facet Silveira,Tiago da
Kozakevicius,Alice de Jesus
Rodrigues,Cesar Ramos
author_role author
author2 Kozakevicius,Alice de Jesus
Rodrigues,Cesar Ramos
author2_role author
author
dc.contributor.author.fl_str_mv Silveira,Tiago da
Kozakevicius,Alice de Jesus
Rodrigues,Cesar Ramos
dc.subject.por.fl_str_mv Signal processing
Drowsiness detection
Wavelet transform
Best m-term approximation
Frequency bands
DB2 Wavelet
topic Signal processing
Drowsiness detection
Wavelet transform
Best m-term approximation
Frequency bands
DB2 Wavelet
description Introduction In this paper we propose a promising new technique for drowsiness detection. It consists of applying the best m-term approximation on a single-channel electroencephalography (EEG) signal preprocessed through a discrete wavelet transform. Methods In order to classify EEG epochs as awake or drowsy states, the most significant m terms from the wavelet expansion of an EEG signal are selected according to the magnitude of their coefficients related to the alpha and beta rhythms. Results By using a simple thresholding strategy it provides hit rates comparable to those using more complex techniques. It was tested on a set of 6 hours and 50 minutes EEG drowsiness signals from PhysioNet Sleep Database yielding an overall sensitivity (TPR) of 84.98% and 98.65% of precision (PPV). Conclusion The method has proved itself efficient at separating data from different brain rhythms, thus alleviating the requirement for complex post-processing classification algorithms.
publishDate 2015
dc.date.none.fl_str_mv 2015-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000200107
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000200107
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2446-4740.0693
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
dc.source.none.fl_str_mv Research on Biomedical Engineering v.31 n.2 2015
reponame:Research on Biomedical Engineering (Online)
instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron:SBEB
instname_str Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron_str SBEB
institution SBEB
reponame_str Research on Biomedical Engineering (Online)
collection Research on Biomedical Engineering (Online)
repository.name.fl_str_mv Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)
repository.mail.fl_str_mv ||rbe@rbejournal.org
_version_ 1752126288178446336