Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Engenharia Biomédica (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-31512013000300007 |
Resumo: | INTRODUCTION: Electromagnetic interference caused by electric power lines adversely affects the signals of electronic instruments, especially those with low amplitude levels. This type of interference is known as common-mode interference. There are many methods and architectures used to minimize the influence of this kind of interference on electronic instruments, the most common of which is the use of band-reject filters. This paper presents the analysis, development, prototype and test of a new reconfigurable filter architecture for biomedical instruments, aiming to reduce the common-mode interference and preserve the useful signal components in the same frequency range as that of the noise, using the technique of dynamic impedance balancing. METHODS: The circuit blocks were mathematically modeled and the overall closed-loop transfer function was derived. Then the project was described and simulated in the VHDL_AMS language and also in an electronics simulation software, using discrete component blocks, with and without feedback. After theoretical analysis and simulation results, a prototype circuit was built and tested using as input a signal obtained from ECG electrodes. RESULTS: The results from the experimental circuit matched those from simulation: a 97.6% noise reduction was obtained in simulations using a sinusoidal signal, and an 86.66% reduction was achieved using ECG electrodes in experimental tests. In both cases, the useful signal was preserved. CONCLUSION: The method and its architecture can be applied to attenuate interferences which occur in the same frequency band as that of the useful signal components, while preserving these signals. |
id |
SBEB-2_15802c0b6df70d462aba90b3f7b06b6c |
---|---|
oai_identifier_str |
oai:scielo:S1517-31512013000300007 |
network_acronym_str |
SBEB-2 |
network_name_str |
Revista Brasileira de Engenharia Biomédica (Online) |
repository_id_str |
|
spelling |
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensorsBiomedical instrumentsElectromagnetic interferenceCommon-Mode RejectionInstrumentation amplifierDynamic impedance balancingINTRODUCTION: Electromagnetic interference caused by electric power lines adversely affects the signals of electronic instruments, especially those with low amplitude levels. This type of interference is known as common-mode interference. There are many methods and architectures used to minimize the influence of this kind of interference on electronic instruments, the most common of which is the use of band-reject filters. This paper presents the analysis, development, prototype and test of a new reconfigurable filter architecture for biomedical instruments, aiming to reduce the common-mode interference and preserve the useful signal components in the same frequency range as that of the noise, using the technique of dynamic impedance balancing. METHODS: The circuit blocks were mathematically modeled and the overall closed-loop transfer function was derived. Then the project was described and simulated in the VHDL_AMS language and also in an electronics simulation software, using discrete component blocks, with and without feedback. After theoretical analysis and simulation results, a prototype circuit was built and tested using as input a signal obtained from ECG electrodes. RESULTS: The results from the experimental circuit matched those from simulation: a 97.6% noise reduction was obtained in simulations using a sinusoidal signal, and an 86.66% reduction was achieved using ECG electrodes in experimental tests. In both cases, the useful signal was preserved. CONCLUSION: The method and its architecture can be applied to attenuate interferences which occur in the same frequency band as that of the useful signal components, while preserving these signals.SBEB - Sociedade Brasileira de Engenharia Biomédica2013-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-31512013000300007Revista Brasileira de Engenharia Biomédica v.29 n.3 2013reponame:Revista Brasileira de Engenharia Biomédica (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.4322/rbeb.2013.030info:eu-repo/semantics/openAccessNegrão,João Francisco RibeiroAraujo,Guilherme Augusto LimeiraCosta Júnior,Carlos Tavares daSouza,Daniel Cardoso deeng2013-10-28T00:00:00Zoai:scielo:S1517-31512013000300007Revistahttp://www.scielo.br/rbebONGhttps://old.scielo.br/oai/scielo-oai.php||rbeb@rbeb.org.br1984-77421517-3151opendoar:2013-10-28T00:00Revista Brasileira de Engenharia Biomédica (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false |
dc.title.none.fl_str_mv |
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors |
title |
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors |
spellingShingle |
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors Negrão,João Francisco Ribeiro Biomedical instruments Electromagnetic interference Common-Mode Rejection Instrumentation amplifier Dynamic impedance balancing |
title_short |
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors |
title_full |
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors |
title_fullStr |
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors |
title_full_unstemmed |
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors |
title_sort |
Electromagnetic interference reduction by dynamic impedance balancing applied to biosensors |
author |
Negrão,João Francisco Ribeiro |
author_facet |
Negrão,João Francisco Ribeiro Araujo,Guilherme Augusto Limeira Costa Júnior,Carlos Tavares da Souza,Daniel Cardoso de |
author_role |
author |
author2 |
Araujo,Guilherme Augusto Limeira Costa Júnior,Carlos Tavares da Souza,Daniel Cardoso de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Negrão,João Francisco Ribeiro Araujo,Guilherme Augusto Limeira Costa Júnior,Carlos Tavares da Souza,Daniel Cardoso de |
dc.subject.por.fl_str_mv |
Biomedical instruments Electromagnetic interference Common-Mode Rejection Instrumentation amplifier Dynamic impedance balancing |
topic |
Biomedical instruments Electromagnetic interference Common-Mode Rejection Instrumentation amplifier Dynamic impedance balancing |
description |
INTRODUCTION: Electromagnetic interference caused by electric power lines adversely affects the signals of electronic instruments, especially those with low amplitude levels. This type of interference is known as common-mode interference. There are many methods and architectures used to minimize the influence of this kind of interference on electronic instruments, the most common of which is the use of band-reject filters. This paper presents the analysis, development, prototype and test of a new reconfigurable filter architecture for biomedical instruments, aiming to reduce the common-mode interference and preserve the useful signal components in the same frequency range as that of the noise, using the technique of dynamic impedance balancing. METHODS: The circuit blocks were mathematically modeled and the overall closed-loop transfer function was derived. Then the project was described and simulated in the VHDL_AMS language and also in an electronics simulation software, using discrete component blocks, with and without feedback. After theoretical analysis and simulation results, a prototype circuit was built and tested using as input a signal obtained from ECG electrodes. RESULTS: The results from the experimental circuit matched those from simulation: a 97.6% noise reduction was obtained in simulations using a sinusoidal signal, and an 86.66% reduction was achieved using ECG electrodes in experimental tests. In both cases, the useful signal was preserved. CONCLUSION: The method and its architecture can be applied to attenuate interferences which occur in the same frequency band as that of the useful signal components, while preserving these signals. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-31512013000300007 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-31512013000300007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.4322/rbeb.2013.030 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
SBEB - Sociedade Brasileira de Engenharia Biomédica |
publisher.none.fl_str_mv |
SBEB - Sociedade Brasileira de Engenharia Biomédica |
dc.source.none.fl_str_mv |
Revista Brasileira de Engenharia Biomédica v.29 n.3 2013 reponame:Revista Brasileira de Engenharia Biomédica (Online) instname:Sociedade Brasileira de Engenharia Biomédica (SBEB) instacron:SBEB |
instname_str |
Sociedade Brasileira de Engenharia Biomédica (SBEB) |
instacron_str |
SBEB |
institution |
SBEB |
reponame_str |
Revista Brasileira de Engenharia Biomédica (Online) |
collection |
Revista Brasileira de Engenharia Biomédica (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Engenharia Biomédica (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB) |
repository.mail.fl_str_mv |
||rbeb@rbeb.org.br |
_version_ |
1754820915061850112 |