Two methods for solving electrostatic problems with azimuthal symmetry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100412 |
Resumo: | Abstract The study of electrostatic phenomena is the gateway to the physics described by Classical Electrodynamics. In this paper, we discuss in detail two methods based on the Uniqueness Theorem for solving electrostatic problems with azimuthal symmetry. The first one is the electrostatic potential extension from the axis of symmetry to an arbitrary point. The other consists in the mutual mapping between two potentials through an inversion transformation. We have prepared a list of six examples for which we calculate, completely or partially, the electrostatic potentials for different charge distributions using both methods. The electric field lines are analyzed and presented graphically in all cases. |
id |
SBF-1_27b7e4d22bc9aa4ce9c47f7acccd3468 |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172020000100412 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Two methods for solving electrostatic problems with azimuthal symmetryElectrostaticAzimuthal SymmetryUniqueness TheoremMethod of InversionAbstract The study of electrostatic phenomena is the gateway to the physics described by Classical Electrodynamics. In this paper, we discuss in detail two methods based on the Uniqueness Theorem for solving electrostatic problems with azimuthal symmetry. The first one is the electrostatic potential extension from the axis of symmetry to an arbitrary point. The other consists in the mutual mapping between two potentials through an inversion transformation. We have prepared a list of six examples for which we calculate, completely or partially, the electrostatic potentials for different charge distributions using both methods. The electric field lines are analyzed and presented graphically in all cases.Sociedade Brasileira de Física2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100412Revista Brasileira de Ensino de Física v.42 2020reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2019-0225info:eu-repo/semantics/openAccessBueno,T.E.P.Silva,U. Camara daeng2019-11-12T00:00:00Zoai:scielo:S1806-11172020000100412Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2019-11-12T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Two methods for solving electrostatic problems with azimuthal symmetry |
title |
Two methods for solving electrostatic problems with azimuthal symmetry |
spellingShingle |
Two methods for solving electrostatic problems with azimuthal symmetry Bueno,T.E.P. Electrostatic Azimuthal Symmetry Uniqueness Theorem Method of Inversion |
title_short |
Two methods for solving electrostatic problems with azimuthal symmetry |
title_full |
Two methods for solving electrostatic problems with azimuthal symmetry |
title_fullStr |
Two methods for solving electrostatic problems with azimuthal symmetry |
title_full_unstemmed |
Two methods for solving electrostatic problems with azimuthal symmetry |
title_sort |
Two methods for solving electrostatic problems with azimuthal symmetry |
author |
Bueno,T.E.P. |
author_facet |
Bueno,T.E.P. Silva,U. Camara da |
author_role |
author |
author2 |
Silva,U. Camara da |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bueno,T.E.P. Silva,U. Camara da |
dc.subject.por.fl_str_mv |
Electrostatic Azimuthal Symmetry Uniqueness Theorem Method of Inversion |
topic |
Electrostatic Azimuthal Symmetry Uniqueness Theorem Method of Inversion |
description |
Abstract The study of electrostatic phenomena is the gateway to the physics described by Classical Electrodynamics. In this paper, we discuss in detail two methods based on the Uniqueness Theorem for solving electrostatic problems with azimuthal symmetry. The first one is the electrostatic potential extension from the axis of symmetry to an arbitrary point. The other consists in the mutual mapping between two potentials through an inversion transformation. We have prepared a list of six examples for which we calculate, completely or partially, the electrostatic potentials for different charge distributions using both methods. The electric field lines are analyzed and presented graphically in all cases. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100412 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100412 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2019-0225 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.42 2020 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122424449564672 |