Derivation of the equations of motion and boundary conditions of a thin plate via the variational method

Detalhes bibliográficos
Autor(a) principal: Pachas,V. S.
Data de Publicação: 2022
Outros Autores: Paredes,A. D., Beltran,J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ensino de Física (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100424
Resumo: Small deflections in both a thin rectangular plate and a thin circular plate are studied via the variational method. In order to apply Hamilton’s principle to this system, the potential energy is expressed in terms of strain and stress tensors. Quantities such as the gradient displacement tensor and the traction vector are reviewed. It is showed the advantage of the variational method as a technique which allows to obtain the equations of motion and the boundary conditions simultaneously.
id SBF-1_44283057dfee6e24bd2566f95d7b1d5e
oai_identifier_str oai:scielo:S1806-11172022000100424
network_acronym_str SBF-1
network_name_str Revista Brasileira de Ensino de Física (Online)
repository_id_str
spelling Derivation of the equations of motion and boundary conditions of a thin plate via the variational methodStressstrainthin plateHamilton PrincipleSmall deflections in both a thin rectangular plate and a thin circular plate are studied via the variational method. In order to apply Hamilton’s principle to this system, the potential energy is expressed in terms of strain and stress tensors. Quantities such as the gradient displacement tensor and the traction vector are reviewed. It is showed the advantage of the variational method as a technique which allows to obtain the equations of motion and the boundary conditions simultaneously.Sociedade Brasileira de Física2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100424Revista Brasileira de Ensino de Física v.44 2022reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2021-0387info:eu-repo/semantics/openAccessPachas,V. S.Paredes,A. D.Beltran,J.eng2022-03-07T00:00:00Zoai:scielo:S1806-11172022000100424Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2022-03-07T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Derivation of the equations of motion and boundary conditions of a thin plate via the variational method
title Derivation of the equations of motion and boundary conditions of a thin plate via the variational method
spellingShingle Derivation of the equations of motion and boundary conditions of a thin plate via the variational method
Pachas,V. S.
Stress
strain
thin plate
Hamilton Principle
title_short Derivation of the equations of motion and boundary conditions of a thin plate via the variational method
title_full Derivation of the equations of motion and boundary conditions of a thin plate via the variational method
title_fullStr Derivation of the equations of motion and boundary conditions of a thin plate via the variational method
title_full_unstemmed Derivation of the equations of motion and boundary conditions of a thin plate via the variational method
title_sort Derivation of the equations of motion and boundary conditions of a thin plate via the variational method
author Pachas,V. S.
author_facet Pachas,V. S.
Paredes,A. D.
Beltran,J.
author_role author
author2 Paredes,A. D.
Beltran,J.
author2_role author
author
dc.contributor.author.fl_str_mv Pachas,V. S.
Paredes,A. D.
Beltran,J.
dc.subject.por.fl_str_mv Stress
strain
thin plate
Hamilton Principle
topic Stress
strain
thin plate
Hamilton Principle
description Small deflections in both a thin rectangular plate and a thin circular plate are studied via the variational method. In order to apply Hamilton’s principle to this system, the potential energy is expressed in terms of strain and stress tensors. Quantities such as the gradient displacement tensor and the traction vector are reviewed. It is showed the advantage of the variational method as a technique which allows to obtain the equations of motion and the boundary conditions simultaneously.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100424
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100424
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1806-9126-rbef-2021-0387
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Revista Brasileira de Ensino de Física v.44 2022
reponame:Revista Brasileira de Ensino de Física (Online)
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Revista Brasileira de Ensino de Física (Online)
collection Revista Brasileira de Ensino de Física (Online)
repository.name.fl_str_mv Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv ||marcio@sbfisica.org.br
_version_ 1752122425942736896