Derivation of the equations of motion and boundary conditions of a thin plate via the variational method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100424 |
Resumo: | Small deflections in both a thin rectangular plate and a thin circular plate are studied via the variational method. In order to apply Hamilton’s principle to this system, the potential energy is expressed in terms of strain and stress tensors. Quantities such as the gradient displacement tensor and the traction vector are reviewed. It is showed the advantage of the variational method as a technique which allows to obtain the equations of motion and the boundary conditions simultaneously. |
id |
SBF-1_44283057dfee6e24bd2566f95d7b1d5e |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172022000100424 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Derivation of the equations of motion and boundary conditions of a thin plate via the variational methodStressstrainthin plateHamilton PrincipleSmall deflections in both a thin rectangular plate and a thin circular plate are studied via the variational method. In order to apply Hamilton’s principle to this system, the potential energy is expressed in terms of strain and stress tensors. Quantities such as the gradient displacement tensor and the traction vector are reviewed. It is showed the advantage of the variational method as a technique which allows to obtain the equations of motion and the boundary conditions simultaneously.Sociedade Brasileira de Física2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100424Revista Brasileira de Ensino de Física v.44 2022reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2021-0387info:eu-repo/semantics/openAccessPachas,V. S.Paredes,A. D.Beltran,J.eng2022-03-07T00:00:00Zoai:scielo:S1806-11172022000100424Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2022-03-07T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Derivation of the equations of motion and boundary conditions of a thin plate via the variational method |
title |
Derivation of the equations of motion and boundary conditions of a thin plate via the variational method |
spellingShingle |
Derivation of the equations of motion and boundary conditions of a thin plate via the variational method Pachas,V. S. Stress strain thin plate Hamilton Principle |
title_short |
Derivation of the equations of motion and boundary conditions of a thin plate via the variational method |
title_full |
Derivation of the equations of motion and boundary conditions of a thin plate via the variational method |
title_fullStr |
Derivation of the equations of motion and boundary conditions of a thin plate via the variational method |
title_full_unstemmed |
Derivation of the equations of motion and boundary conditions of a thin plate via the variational method |
title_sort |
Derivation of the equations of motion and boundary conditions of a thin plate via the variational method |
author |
Pachas,V. S. |
author_facet |
Pachas,V. S. Paredes,A. D. Beltran,J. |
author_role |
author |
author2 |
Paredes,A. D. Beltran,J. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pachas,V. S. Paredes,A. D. Beltran,J. |
dc.subject.por.fl_str_mv |
Stress strain thin plate Hamilton Principle |
topic |
Stress strain thin plate Hamilton Principle |
description |
Small deflections in both a thin rectangular plate and a thin circular plate are studied via the variational method. In order to apply Hamilton’s principle to this system, the potential energy is expressed in terms of strain and stress tensors. Quantities such as the gradient displacement tensor and the traction vector are reviewed. It is showed the advantage of the variational method as a technique which allows to obtain the equations of motion and the boundary conditions simultaneously. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100424 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100424 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2021-0387 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.44 2022 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122425942736896 |