A gentle introduction to scaling relations in biological systems

Detalhes bibliográficos
Autor(a) principal: Ribeiro,Fabiano L.
Data de Publicação: 2022
Outros Autores: Pereira,William R. L. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ensino de Física (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100409
Resumo: In this paper it is presented a gentle review of empirical and theoretical advances in understanding the role of size in biological organisms. More specifically, it deals with how the energy demand, expressed by the metabolic rate, changes according to the mass of an organism. Empirical evidence suggests a power-law relation between mass and metabolic rate, namely the allometric equation. For vascular organisms, the exponent β of this power-law is smaller than one, which implies scaling economy; that is, the greater the organism is, the lesser energy per cell it demands. However, the numerical value of this exponent is a theme of extensive debate and a central issue in comparative physiology. A historical perspective is shown, beginning with the first empirical insights in the sec. 19 about scaling properties in biology, passing through the two more important theories that explain the scaling properties quantitatively. Firstly, the Rubner model considers organism surface area and heat dissipation to derive β = 2 / 3. Secondly, the West-Brown-Enquist theory explains such scaling properties due to the hierarchical and fractal nutrient distribution network, deriving β = 3 / 4.
id SBF-1_480f3bc7e0824bace9baf4e68c9d253a
oai_identifier_str oai:scielo:S1806-11172022000100409
network_acronym_str SBF-1
network_name_str Revista Brasileira de Ensino de Física (Online)
repository_id_str
spelling A gentle introduction to scaling relations in biological systemsComplex systemsscaling theorymodellingIn this paper it is presented a gentle review of empirical and theoretical advances in understanding the role of size in biological organisms. More specifically, it deals with how the energy demand, expressed by the metabolic rate, changes according to the mass of an organism. Empirical evidence suggests a power-law relation between mass and metabolic rate, namely the allometric equation. For vascular organisms, the exponent β of this power-law is smaller than one, which implies scaling economy; that is, the greater the organism is, the lesser energy per cell it demands. However, the numerical value of this exponent is a theme of extensive debate and a central issue in comparative physiology. A historical perspective is shown, beginning with the first empirical insights in the sec. 19 about scaling properties in biology, passing through the two more important theories that explain the scaling properties quantitatively. Firstly, the Rubner model considers organism surface area and heat dissipation to derive β = 2 / 3. Secondly, the West-Brown-Enquist theory explains such scaling properties due to the hierarchical and fractal nutrient distribution network, deriving β = 3 / 4.Sociedade Brasileira de Física2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100409Revista Brasileira de Ensino de Física v.44 2022reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2021-0291info:eu-repo/semantics/openAccessRibeiro,Fabiano L.Pereira,William R. L. S.eng2021-12-21T00:00:00Zoai:scielo:S1806-11172022000100409Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2021-12-21T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv A gentle introduction to scaling relations in biological systems
title A gentle introduction to scaling relations in biological systems
spellingShingle A gentle introduction to scaling relations in biological systems
Ribeiro,Fabiano L.
Complex systems
scaling theory
modelling
title_short A gentle introduction to scaling relations in biological systems
title_full A gentle introduction to scaling relations in biological systems
title_fullStr A gentle introduction to scaling relations in biological systems
title_full_unstemmed A gentle introduction to scaling relations in biological systems
title_sort A gentle introduction to scaling relations in biological systems
author Ribeiro,Fabiano L.
author_facet Ribeiro,Fabiano L.
Pereira,William R. L. S.
author_role author
author2 Pereira,William R. L. S.
author2_role author
dc.contributor.author.fl_str_mv Ribeiro,Fabiano L.
Pereira,William R. L. S.
dc.subject.por.fl_str_mv Complex systems
scaling theory
modelling
topic Complex systems
scaling theory
modelling
description In this paper it is presented a gentle review of empirical and theoretical advances in understanding the role of size in biological organisms. More specifically, it deals with how the energy demand, expressed by the metabolic rate, changes according to the mass of an organism. Empirical evidence suggests a power-law relation between mass and metabolic rate, namely the allometric equation. For vascular organisms, the exponent β of this power-law is smaller than one, which implies scaling economy; that is, the greater the organism is, the lesser energy per cell it demands. However, the numerical value of this exponent is a theme of extensive debate and a central issue in comparative physiology. A historical perspective is shown, beginning with the first empirical insights in the sec. 19 about scaling properties in biology, passing through the two more important theories that explain the scaling properties quantitatively. Firstly, the Rubner model considers organism surface area and heat dissipation to derive β = 2 / 3. Secondly, the West-Brown-Enquist theory explains such scaling properties due to the hierarchical and fractal nutrient distribution network, deriving β = 3 / 4.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100409
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100409
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1806-9126-rbef-2021-0291
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Revista Brasileira de Ensino de Física v.44 2022
reponame:Revista Brasileira de Ensino de Física (Online)
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Revista Brasileira de Ensino de Física (Online)
collection Revista Brasileira de Ensino de Física (Online)
repository.name.fl_str_mv Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv ||marcio@sbfisica.org.br
_version_ 1752122425921765376