A gentle introduction to scaling relations in biological systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100409 |
Resumo: | In this paper it is presented a gentle review of empirical and theoretical advances in understanding the role of size in biological organisms. More specifically, it deals with how the energy demand, expressed by the metabolic rate, changes according to the mass of an organism. Empirical evidence suggests a power-law relation between mass and metabolic rate, namely the allometric equation. For vascular organisms, the exponent β of this power-law is smaller than one, which implies scaling economy; that is, the greater the organism is, the lesser energy per cell it demands. However, the numerical value of this exponent is a theme of extensive debate and a central issue in comparative physiology. A historical perspective is shown, beginning with the first empirical insights in the sec. 19 about scaling properties in biology, passing through the two more important theories that explain the scaling properties quantitatively. Firstly, the Rubner model considers organism surface area and heat dissipation to derive β = 2 / 3. Secondly, the West-Brown-Enquist theory explains such scaling properties due to the hierarchical and fractal nutrient distribution network, deriving β = 3 / 4. |
id |
SBF-1_480f3bc7e0824bace9baf4e68c9d253a |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172022000100409 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
A gentle introduction to scaling relations in biological systemsComplex systemsscaling theorymodellingIn this paper it is presented a gentle review of empirical and theoretical advances in understanding the role of size in biological organisms. More specifically, it deals with how the energy demand, expressed by the metabolic rate, changes according to the mass of an organism. Empirical evidence suggests a power-law relation between mass and metabolic rate, namely the allometric equation. For vascular organisms, the exponent β of this power-law is smaller than one, which implies scaling economy; that is, the greater the organism is, the lesser energy per cell it demands. However, the numerical value of this exponent is a theme of extensive debate and a central issue in comparative physiology. A historical perspective is shown, beginning with the first empirical insights in the sec. 19 about scaling properties in biology, passing through the two more important theories that explain the scaling properties quantitatively. Firstly, the Rubner model considers organism surface area and heat dissipation to derive β = 2 / 3. Secondly, the West-Brown-Enquist theory explains such scaling properties due to the hierarchical and fractal nutrient distribution network, deriving β = 3 / 4.Sociedade Brasileira de Física2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100409Revista Brasileira de Ensino de Física v.44 2022reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2021-0291info:eu-repo/semantics/openAccessRibeiro,Fabiano L.Pereira,William R. L. S.eng2021-12-21T00:00:00Zoai:scielo:S1806-11172022000100409Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2021-12-21T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
A gentle introduction to scaling relations in biological systems |
title |
A gentle introduction to scaling relations in biological systems |
spellingShingle |
A gentle introduction to scaling relations in biological systems Ribeiro,Fabiano L. Complex systems scaling theory modelling |
title_short |
A gentle introduction to scaling relations in biological systems |
title_full |
A gentle introduction to scaling relations in biological systems |
title_fullStr |
A gentle introduction to scaling relations in biological systems |
title_full_unstemmed |
A gentle introduction to scaling relations in biological systems |
title_sort |
A gentle introduction to scaling relations in biological systems |
author |
Ribeiro,Fabiano L. |
author_facet |
Ribeiro,Fabiano L. Pereira,William R. L. S. |
author_role |
author |
author2 |
Pereira,William R. L. S. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ribeiro,Fabiano L. Pereira,William R. L. S. |
dc.subject.por.fl_str_mv |
Complex systems scaling theory modelling |
topic |
Complex systems scaling theory modelling |
description |
In this paper it is presented a gentle review of empirical and theoretical advances in understanding the role of size in biological organisms. More specifically, it deals with how the energy demand, expressed by the metabolic rate, changes according to the mass of an organism. Empirical evidence suggests a power-law relation between mass and metabolic rate, namely the allometric equation. For vascular organisms, the exponent β of this power-law is smaller than one, which implies scaling economy; that is, the greater the organism is, the lesser energy per cell it demands. However, the numerical value of this exponent is a theme of extensive debate and a central issue in comparative physiology. A historical perspective is shown, beginning with the first empirical insights in the sec. 19 about scaling properties in biology, passing through the two more important theories that explain the scaling properties quantitatively. Firstly, the Rubner model considers organism surface area and heat dissipation to derive β = 2 / 3. Secondly, the West-Brown-Enquist theory explains such scaling properties due to the hierarchical and fractal nutrient distribution network, deriving β = 3 / 4. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100409 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100409 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2021-0291 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.44 2022 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122425921765376 |