Oscilador quártico e funções elípticas de Jacobi
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100405 |
Resumo: | Tipicamente, pequenas oscilações em torno de um ponto de equilíbrio estável são movimentos harmônicos simples com frequência determinada pelo valor da segunda derivada da energia potencial no ponto de equilíbrio. Há casos anômalos, no entanto, em que a segunda derivada é nula e o termo de quarta ordem domina a expansão da energia potencial nas vizinhanças do mínimo. Neste caso, as pequenas oscilações são descritas pelo oscilador quártico. Por meio de um exemplo simples, em que ocorre a referida anomalia, discutimos o oscilador quártico e mostramos como sua equação de movimento pode ser resolvida em termos de funções elípticas de Jacobi. O exemplo oferece a oportunidade de familiarizar estudantes de graduação com essas funções importantes que não constam no currículo padrão dos cursos de física. |
id |
SBF-1_5898cab40d1d21c2fac268738eb1b5d8 |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172017000100405 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Oscilador quártico e funções elípticas de Jacobipequenas oscilaçõesoscilador quárticofunções elípticas de JacobiTipicamente, pequenas oscilações em torno de um ponto de equilíbrio estável são movimentos harmônicos simples com frequência determinada pelo valor da segunda derivada da energia potencial no ponto de equilíbrio. Há casos anômalos, no entanto, em que a segunda derivada é nula e o termo de quarta ordem domina a expansão da energia potencial nas vizinhanças do mínimo. Neste caso, as pequenas oscilações são descritas pelo oscilador quártico. Por meio de um exemplo simples, em que ocorre a referida anomalia, discutimos o oscilador quártico e mostramos como sua equação de movimento pode ser resolvida em termos de funções elípticas de Jacobi. O exemplo oferece a oportunidade de familiarizar estudantes de graduação com essas funções importantes que não constam no currículo padrão dos cursos de física.Sociedade Brasileira de Física2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100405Revista Brasileira de Ensino de Física v.39 n.1 2017reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2016-0175info:eu-repo/semantics/openAccessLemos,Nivaldo A.por2017-09-29T00:00:00Zoai:scielo:S1806-11172017000100405Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2017-09-29T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Oscilador quártico e funções elípticas de Jacobi |
title |
Oscilador quártico e funções elípticas de Jacobi |
spellingShingle |
Oscilador quártico e funções elípticas de Jacobi Lemos,Nivaldo A. pequenas oscilações oscilador quártico funções elípticas de Jacobi |
title_short |
Oscilador quártico e funções elípticas de Jacobi |
title_full |
Oscilador quártico e funções elípticas de Jacobi |
title_fullStr |
Oscilador quártico e funções elípticas de Jacobi |
title_full_unstemmed |
Oscilador quártico e funções elípticas de Jacobi |
title_sort |
Oscilador quártico e funções elípticas de Jacobi |
author |
Lemos,Nivaldo A. |
author_facet |
Lemos,Nivaldo A. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Lemos,Nivaldo A. |
dc.subject.por.fl_str_mv |
pequenas oscilações oscilador quártico funções elípticas de Jacobi |
topic |
pequenas oscilações oscilador quártico funções elípticas de Jacobi |
description |
Tipicamente, pequenas oscilações em torno de um ponto de equilíbrio estável são movimentos harmônicos simples com frequência determinada pelo valor da segunda derivada da energia potencial no ponto de equilíbrio. Há casos anômalos, no entanto, em que a segunda derivada é nula e o termo de quarta ordem domina a expansão da energia potencial nas vizinhanças do mínimo. Neste caso, as pequenas oscilações são descritas pelo oscilador quártico. Por meio de um exemplo simples, em que ocorre a referida anomalia, discutimos o oscilador quártico e mostramos como sua equação de movimento pode ser resolvida em termos de funções elípticas de Jacobi. O exemplo oferece a oportunidade de familiarizar estudantes de graduação com essas funções importantes que não constam no currículo padrão dos cursos de física. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100405 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100405 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2016-0175 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.39 n.1 2017 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122422941712384 |