Simple but accurate periodic solutions for the nonlinear pendulum equation

Detalhes bibliográficos
Autor(a) principal: Lima,Fábio M.S.
Data de Publicação: 2019
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ensino de Física (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172019000100413
Resumo: Abstract Despite its elementary structure, the simple pendulum oscillations are described by a nonlinear differential equation whose exact solution for the angular displacement from vertical as a function of time cannot be expressed in terms of an elementary function, so either a numerical treatment or some analytical approximation is ultimately demanded. Such solutions have been thoroughly investigated due to the abundance of distinct pendular systems in nature and, more recently, due to the availability of automatic data acquisition systems in undergraduate laboratories. However, it is well-known that numerical solutions to differential equations usually loose accuracy (due to accumulation of roundoff errors) and polynomial approximations diverge after long time intervals. In this work, I take a few terms of the Fourier series expansion of the elliptic function sn ( u ; k ) as a source of accurate periodic solutions for the pendulum equation. Interestingly, these approximations remain accurate for arbitrarily long time intervals, even for large amplitudes, which shows its adequacy for the analysis of experimental data gathered in classical mechanics classes.
id SBF-1_621f8996b28a6b81981cf54141572324
oai_identifier_str oai:scielo:S1806-11172019000100413
network_acronym_str SBF-1
network_name_str Revista Brasileira de Ensino de Física (Online)
repository_id_str
spelling Simple but accurate periodic solutions for the nonlinear pendulum equationSimple pendulumNonlinear oscillationsFourier seriesJacobi elliptic functionsAbstract Despite its elementary structure, the simple pendulum oscillations are described by a nonlinear differential equation whose exact solution for the angular displacement from vertical as a function of time cannot be expressed in terms of an elementary function, so either a numerical treatment or some analytical approximation is ultimately demanded. Such solutions have been thoroughly investigated due to the abundance of distinct pendular systems in nature and, more recently, due to the availability of automatic data acquisition systems in undergraduate laboratories. However, it is well-known that numerical solutions to differential equations usually loose accuracy (due to accumulation of roundoff errors) and polynomial approximations diverge after long time intervals. In this work, I take a few terms of the Fourier series expansion of the elliptic function sn ( u ; k ) as a source of accurate periodic solutions for the pendulum equation. Interestingly, these approximations remain accurate for arbitrarily long time intervals, even for large amplitudes, which shows its adequacy for the analysis of experimental data gathered in classical mechanics classes.Sociedade Brasileira de Física2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172019000100413Revista Brasileira de Ensino de Física v.41 n.1 2019reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2018-0202info:eu-repo/semantics/openAccessLima,Fábio M.S.eng2018-09-18T00:00:00Zoai:scielo:S1806-11172019000100413Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2018-09-18T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Simple but accurate periodic solutions for the nonlinear pendulum equation
title Simple but accurate periodic solutions for the nonlinear pendulum equation
spellingShingle Simple but accurate periodic solutions for the nonlinear pendulum equation
Lima,Fábio M.S.
Simple pendulum
Nonlinear oscillations
Fourier series
Jacobi elliptic functions
title_short Simple but accurate periodic solutions for the nonlinear pendulum equation
title_full Simple but accurate periodic solutions for the nonlinear pendulum equation
title_fullStr Simple but accurate periodic solutions for the nonlinear pendulum equation
title_full_unstemmed Simple but accurate periodic solutions for the nonlinear pendulum equation
title_sort Simple but accurate periodic solutions for the nonlinear pendulum equation
author Lima,Fábio M.S.
author_facet Lima,Fábio M.S.
author_role author
dc.contributor.author.fl_str_mv Lima,Fábio M.S.
dc.subject.por.fl_str_mv Simple pendulum
Nonlinear oscillations
Fourier series
Jacobi elliptic functions
topic Simple pendulum
Nonlinear oscillations
Fourier series
Jacobi elliptic functions
description Abstract Despite its elementary structure, the simple pendulum oscillations are described by a nonlinear differential equation whose exact solution for the angular displacement from vertical as a function of time cannot be expressed in terms of an elementary function, so either a numerical treatment or some analytical approximation is ultimately demanded. Such solutions have been thoroughly investigated due to the abundance of distinct pendular systems in nature and, more recently, due to the availability of automatic data acquisition systems in undergraduate laboratories. However, it is well-known that numerical solutions to differential equations usually loose accuracy (due to accumulation of roundoff errors) and polynomial approximations diverge after long time intervals. In this work, I take a few terms of the Fourier series expansion of the elliptic function sn ( u ; k ) as a source of accurate periodic solutions for the pendulum equation. Interestingly, these approximations remain accurate for arbitrarily long time intervals, even for large amplitudes, which shows its adequacy for the analysis of experimental data gathered in classical mechanics classes.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172019000100413
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172019000100413
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1806-9126-rbef-2018-0202
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Revista Brasileira de Ensino de Física v.41 n.1 2019
reponame:Revista Brasileira de Ensino de Física (Online)
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Revista Brasileira de Ensino de Física (Online)
collection Revista Brasileira de Ensino de Física (Online)
repository.name.fl_str_mv Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv ||marcio@sbfisica.org.br
_version_ 1752122423966171136