Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstruction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100403 |
Resumo: | While most common holographic methods of digital reconstruction are based on the convolution theory, for the ease in the mathematical approach, here we present an algorithm by a discretization of the Huygens-Fresnel integral from a Taylor series expansion to produce a bidimensional Fourier transform. Compared to the digital convolution method, the algorithm presented here is more concise and generates a reduction in processing time, since the Fourier transform appears only once in the discretization. Another advantage is associated with the production of results in the frequency domain, allowing the optical information to be obtained directly. |
id |
SBF-1_9ada193f7480b25f8b76a56023e644a2 |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172022000100403 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstructionDigital holographyFresnel methodDigital reconstructionFresnel transformWhile most common holographic methods of digital reconstruction are based on the convolution theory, for the ease in the mathematical approach, here we present an algorithm by a discretization of the Huygens-Fresnel integral from a Taylor series expansion to produce a bidimensional Fourier transform. Compared to the digital convolution method, the algorithm presented here is more concise and generates a reduction in processing time, since the Fourier transform appears only once in the discretization. Another advantage is associated with the production of results in the frequency domain, allowing the optical information to be obtained directly.Sociedade Brasileira de Física2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100403Revista Brasileira de Ensino de Física v.44 2022reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2021-0193info:eu-repo/semantics/openAccessPrado,Felipe M.Utiyama,Karen A. U.Toffoli,Daniel J.Wetter,Niklaus U.da Silva,Sidney L.eng2022-02-02T00:00:00Zoai:scielo:S1806-11172022000100403Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2022-02-02T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstruction |
title |
Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstruction |
spellingShingle |
Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstruction Prado,Felipe M. Digital holography Fresnel method Digital reconstruction Fresnel transform |
title_short |
Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstruction |
title_full |
Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstruction |
title_fullStr |
Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstruction |
title_full_unstemmed |
Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstruction |
title_sort |
Computational algorithm from the Huygens-Fresnel’s diffraction integral for two-dimensional holographic reconstruction |
author |
Prado,Felipe M. |
author_facet |
Prado,Felipe M. Utiyama,Karen A. U. Toffoli,Daniel J. Wetter,Niklaus U. da Silva,Sidney L. |
author_role |
author |
author2 |
Utiyama,Karen A. U. Toffoli,Daniel J. Wetter,Niklaus U. da Silva,Sidney L. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Prado,Felipe M. Utiyama,Karen A. U. Toffoli,Daniel J. Wetter,Niklaus U. da Silva,Sidney L. |
dc.subject.por.fl_str_mv |
Digital holography Fresnel method Digital reconstruction Fresnel transform |
topic |
Digital holography Fresnel method Digital reconstruction Fresnel transform |
description |
While most common holographic methods of digital reconstruction are based on the convolution theory, for the ease in the mathematical approach, here we present an algorithm by a discretization of the Huygens-Fresnel integral from a Taylor series expansion to produce a bidimensional Fourier transform. Compared to the digital convolution method, the algorithm presented here is more concise and generates a reduction in processing time, since the Fourier transform appears only once in the discretization. Another advantage is associated with the production of results in the frequency domain, allowing the optical information to be obtained directly. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100403 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100403 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2021-0193 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.44 2022 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122425913376768 |