Sobre a conexão entre alguns modelos físicos não-lineares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100407 |
Resumo: | Neste trabalho revisamos alguns dos sistemas não-lineares mais paradigmáticos e desvendamos algumas das suas surpreendentes interligações. Os problemas de interesse, descrito matematicamente pelas equações de sine-Gordon, Toda e KdV, generalizam modelos físicos conhecidos, como o pêndulo simples, o sistema massa-mola e as ondas lineares em água, respectivamente. Depois de discutirmos as peculiaridades decorrentes da presença de não-linearidades nos modelos, esclarecemos como os sistemas apresentados são relacionados uns aos outros, indicando a existência de uma família de equações que compartilham propriedades como a integrabilidade. Nós mostramos como a equação de KdV pode ser convenientemente discretizada a fim de preservar tais características importantes. Além de apresentarmos as ligações estreitas que esta equação tem com a cadeia de Toda e com a equação sine-Gordon, nós também investigamos outros procedimentos capazes de gerar um sistema integrável discreto a partir do modelo KdV com a discretização de Hirota. |
id |
SBF-1_d9e02ed74c257fc632529fa286a3f73a |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172017000100407 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Sobre a conexão entre alguns modelos físicos não-linearesKdVSine-GordonCadeia de TodaNeste trabalho revisamos alguns dos sistemas não-lineares mais paradigmáticos e desvendamos algumas das suas surpreendentes interligações. Os problemas de interesse, descrito matematicamente pelas equações de sine-Gordon, Toda e KdV, generalizam modelos físicos conhecidos, como o pêndulo simples, o sistema massa-mola e as ondas lineares em água, respectivamente. Depois de discutirmos as peculiaridades decorrentes da presença de não-linearidades nos modelos, esclarecemos como os sistemas apresentados são relacionados uns aos outros, indicando a existência de uma família de equações que compartilham propriedades como a integrabilidade. Nós mostramos como a equação de KdV pode ser convenientemente discretizada a fim de preservar tais características importantes. Além de apresentarmos as ligações estreitas que esta equação tem com a cadeia de Toda e com a equação sine-Gordon, nós também investigamos outros procedimentos capazes de gerar um sistema integrável discreto a partir do modelo KdV com a discretização de Hirota.Sociedade Brasileira de Física2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100407Revista Brasileira de Ensino de Física v.39 n.1 2017reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2016-0083info:eu-repo/semantics/openAccessAndrade,D. X.Anjos,P. H. R.Assis,P. E. G.por2017-09-29T00:00:00Zoai:scielo:S1806-11172017000100407Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2017-09-29T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Sobre a conexão entre alguns modelos físicos não-lineares |
title |
Sobre a conexão entre alguns modelos físicos não-lineares |
spellingShingle |
Sobre a conexão entre alguns modelos físicos não-lineares Andrade,D. X. KdV Sine-Gordon Cadeia de Toda |
title_short |
Sobre a conexão entre alguns modelos físicos não-lineares |
title_full |
Sobre a conexão entre alguns modelos físicos não-lineares |
title_fullStr |
Sobre a conexão entre alguns modelos físicos não-lineares |
title_full_unstemmed |
Sobre a conexão entre alguns modelos físicos não-lineares |
title_sort |
Sobre a conexão entre alguns modelos físicos não-lineares |
author |
Andrade,D. X. |
author_facet |
Andrade,D. X. Anjos,P. H. R. Assis,P. E. G. |
author_role |
author |
author2 |
Anjos,P. H. R. Assis,P. E. G. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Andrade,D. X. Anjos,P. H. R. Assis,P. E. G. |
dc.subject.por.fl_str_mv |
KdV Sine-Gordon Cadeia de Toda |
topic |
KdV Sine-Gordon Cadeia de Toda |
description |
Neste trabalho revisamos alguns dos sistemas não-lineares mais paradigmáticos e desvendamos algumas das suas surpreendentes interligações. Os problemas de interesse, descrito matematicamente pelas equações de sine-Gordon, Toda e KdV, generalizam modelos físicos conhecidos, como o pêndulo simples, o sistema massa-mola e as ondas lineares em água, respectivamente. Depois de discutirmos as peculiaridades decorrentes da presença de não-linearidades nos modelos, esclarecemos como os sistemas apresentados são relacionados uns aos outros, indicando a existência de uma família de equações que compartilham propriedades como a integrabilidade. Nós mostramos como a equação de KdV pode ser convenientemente discretizada a fim de preservar tais características importantes. Além de apresentarmos as ligações estreitas que esta equação tem com a cadeia de Toda e com a equação sine-Gordon, nós também investigamos outros procedimentos capazes de gerar um sistema integrável discreto a partir do modelo KdV com a discretização de Hirota. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100407 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100407 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2016-0083 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.39 n.1 2017 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122422944858112 |